The steam exciting force has been proved to be great threat to the operation safety of steam turbines. The mechanism of steam exciting vibration cannot be profoundly revealed by simply analyzing the steam exciting force, especially in simplified models. Therefore, a full-circle stage of steam turbine with shroud and labyrinth seals was investigated by numerical simulator CFX. The instability of leakage flow and the pressure fluctuation were analyzed on the eccentric condition. The effects of leakage vortexes, the depth-width ratio of seal cavity, and the eccentricity on the steam exciting force were studied. Results show that the leakage flow is nonuniform in the circumferential direction with the change of front teeth vortexes, which causes the steam exciting force. The tangential and radial steam exciting force both increase with the eccentricity increasing. The effects of the depth-width ratio of seal cavity on the two forces are different. In addition, the pressure fluctuation caused by the leakage vortexes on the shroud surfaces is a main factor inducing the steam exciting force. This research provides a theoretical guidance for the operation safety and optimization of steam turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.