A 42-d experiment was conducted with 276 Arbor Acres broilers (1 d of age, weighing 41.1 ± 1.5 g) to determine the effects of Forsythia suspensa extract (FSE) and berberine (BE) on growth performance, immunity, antioxidant activities, and intestinal microbiota stocked at high stocking density (28 kg of BW/m(2) as the normal density, 46 kg of BW/m(2) as the high density). The feeding program consisted of a starter diet from d 1 to 21 of age and a finisher diet from d 22 to 42. Dietary treatments included (1) negative control group (NC), stocked at high density; (2) positive control group (PC), stocked at normal density; (3) FSE, NC + 100 mg/kg of FSE; (4) BE, NC + 100 mg/kg of BE; and (5) FSE + BE, NC + 100 mg/kg of FSE + 100 mg/kg of BE. Birds had free access to diets and water. Body weight and feed intake were measured at d 21 and 42. Blood, spleen and bursa, and intestinal contents were collected at d 42 for analysis. The results showed that growth performance did not differ among treatments in the starter period; however, in the finisher and overall periods, birds in FSE + BE, FSE, BE, and PC had greater final BW, ADG, and ADFI than the birds in NC (P < 0.05). The birds in FSE + BE, FSE, BE, and PC had greater bursa weight, bursa weight/BW ratio, serum total antioxidant capacity, and superoxide dismutase activity than birds in NC (P < 0.05). The FSE + BE, FSE, and BE birds had lower serum malondialdehyde level than NC birds (P < 0.05). The FSE + BE, FSE, BE, and PC birds had lower counts of Escherichia coli but greater Lactobacillus in the cecum than that of NC birds (P < 0.05). Dietary supplementation with FSE, BE, or both can improve the growth performance possibly by enhancing immunity, reducing oxidative stress, and promoting intestinal colonization by healthy microbiota of broilers under high stocking density.
Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and an allotetraploid genomic group, AD. Gossypium raimondii (D ) and G. arboreum (A ) are the putative contributors to the progenitor of G. hirsutum (AD ), the economically important fibre-producing cotton species. Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genomes were sequenced, assembled, annotated and analysed in orderly. Gossypium raimondii (D ) and G. arboreum (A ) mitochondrial genomes were provided in this study. The mitochondrial genomes of two diploid species harboured circular genome of 643,914 bp (D ) and 687,482 bp (A ), respectively. They differ in size and number of repeat sequences, both contain illuminating triplicate sequences with 7317 and 10,246 bp, respectively, demonstrating dynamic difference and rearranged genome organisations. Comparing the D and A mitogenomes with mitogenomes of tetraploid Gossypium species (AD , G. hirsutum; AD , G. barbadense), a shared 11 kbp fragment loss was detected in allotetraploid species, three regions shared by G. arboreum (A ), G. hirsutum (AD ) and G. barbadense (AD ), while eight regions were specific to G. raimondii (D ). The presence/absence variations and gene-based phylogeny supported that A-genome is a cytoplasmic donor to the progenitor of allotetraploid species G. hirsutum and G. barbadense. The results present structure variations and phylogeny of Gossypium mitochondrial genome evolution.
This study was conducted to determine the DE and ME content of 25 samples of corn distillers dried grains with solubles (DDGS) fed to growing pigs and to generate prediction equations for DE and ME based on chemical analysis. The 25 samples included 15 full-oil (no oil extracted; ether extract [EE] > 8%) DDGS and 10 reduced-oil (oil extracted; EE < 8%) DDGS collected from 17 ethanol plants in China. A corn–soybean meal diet constituted the basal diet and the other 25 diets replaced a portion of the corn, soybean meal, and lysine of the basal diet with 28.8% of 1 of the 25 corn DDGS sources. Seventy-eight barrows (initial BW = 42.6 ± 6.2 kg) were used in the experiment conducted over 2 consecutive periods (n = 6 per treatment) using a completely randomized design. For each period, pigs were placed in metabolism cages for a 5-d total collection of feces and urine following a 7-d adaptation to the diets. Among the 25 corn DDGS samples, EE, NDF, DE, and ME content (DM basis) ranged from 2.8 to 14.2%, 31.0 to 46.6%, 3,255 to 4,103 kcal/kg, and 2,955 to 3,899 kcal/kg, respectively. Using a stepwise regression analysis, a series of DE and ME prediction equations were developed not only among all 25 DDGS but also only within 15 full-oil DDGS and 10 reduced-oil DDGS samples. The best fit equations of DE (kcal/kg DM) for the complete set of 25 DDGS, 15 full-oil DDGS, and 10 reduced-oil DDGS were 2,064 – (38.51 × % NDF) + (0.64 × % GE) – (39.70 × % ash), –(87.53 × % ADF) + (1.02 × % GE) – (22.99 × % hemicellulose), and 3,491 – (40.25 × % NDF) + (46.95 × % CP), respectively. The best fit equations for ME (kcal/kg DM) for the complete set of 25 DDGS, 15 full-oil DDGS, and 10 reduced-oil DDGS were 1,554 – (44.11 × % NDF) + (0.77 × % GE) – (68.51 × % ash), 7,898 – (42.08 × % NDF) – (136.17 × % ash) + (101.19 × % EE) (103.83 × % CP), and 4,066 – (46.30 × % NDF) + (45.80 × % CP) – (106.19 × % ash), respectively. Using the sum of squared residuals to compare the accuracy of the 3 groups of prediction equations revealed that separate equations for full-oil DDGS and reduced-oil DDGS each provided a better fit than a single equation for the entire set of DDGS sources. These results indicated that the DE and ME values in corn DDGS are related to the chemical composition, primarily the EE and fiber concentrations. Specific prediction equations derived from full-oil and reduced-oil DDGS are better than equations derived from the entire set of DDGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.