Hepatocellular carcinoma (HCC) is a complex and refractory malignant tumor, ranking the third cause of cancer-related deaths worldwide. Lenvatinib is currently employed to treat advanced, unresectable HCC as a first-line drug. The purpose of this study was to explore the pharmacological mechanisms of lenvatinib acting on HCC through the analysis of differential expressed genes based on network pharmacology. The target genes of lenvatinib were collected from PubChem, SwissTargetPrediction, PharmMapper, and BATMAN-TCM online public databases. In addition, related gene targets for HCC were obtained using NCBI Gene Expression Omnibus (NCBI-GEO) database. Afterward, the protein-protein interaction (PPI) network was established to visualize and understand the interaction relationships of overlapping gene targets from both lenvatinib and HCC. Furthermore, according to the data obtained, Gene Ontology (GO) analysis indicated that these intersectant genes were mainly enriched in response to xenobiotic stimulus, gland development, ion channel complex, membrane raft, and steroid binding. Besides, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the therapeutic effects of lenvatinib on HCC probably involved bile secretion, MAPK signaling pathway, cGMP-PKG signaling pathway, PI3K-Akt signaling pathway, and Ras signaling pathway. Moreover, a total of six key differential genes, namely, ALB, CCND1, ESR1, AR, CCNA2, and AURKA, were identified as most significant targets associated with lenvatinib treating HCC and further verified by molecular docking, which demonstrated that lenvatinib had a strong binding efficiency with these six key gene-encoded proteins. Taken together, this study systematically provided new insights for researchers to determine the intervention mechanisms of lenvatinib in HCC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.