BackgroundClinical presentation, diagnosis, management and outcome of molecularly defined congenital pulmonary alveolar proteinosis (PAP) due to mutations in the GM-CSF receptor are not well known.Case presentationA 2 1/2 years old girl was diagnosed as having alveolar proteinosis. Whole lung lavages were performed with a new catheter balloon technique, feasible in small sized airways. Because of some interstitial inflammation in the lung biopsy and to further improve the condition, empirical therapy with systemic steroids and azathioprin, and inhaled and subcutaneous GMCSF, were used. Based on clinical measures, total protein and lipid recovered by whole lung lavages, all these treatments were without benefit. Conversely, severe respiratory viral infections and an invasive aspergillosis with aspergilloma formation occurred. Recently the novel homozygous stop mutation p.Ser25X of the GMCSF receptor alpha chain was identified in the patient. This mutation leads to a lack of functional GMCSF receptor and a reduced response to GMCSF stimulation of CD11b expression of mononuclear cells of the patient. Subsequently a very intense treatment with monthly lavages was initiated, resulting for the first time in complete resolution of partial respiratory insufficiency and a significant improvement of the overall somato-psychosocial condition of the child.ConclusionsThe long term management from early childhood into young adolescence of severe alveolar proteinosis due to GMCSF receptor deficiency requires a dedicated specialized team to perform technically demanding whole lung lavages and cope with complications.
Objective. To describe biochemical findings and the spectrum of mevalonate kinase (MVK) gene mutations as well as an associated TNFRSF1A lowpenetrance variant in a series of patients with clinical features of the hyperimmunoglobulinemia D with periodic fever syndrome (HIDS).Methods. The MVK gene was sequenced in 8 children and 1 adult (including 2 siblings) fulfilling the clinical criteria for HIDS. In addition, sequencing of exons 2, 3, 4, and 6 of the TNFRSF1A gene was performed in patients with only one or no MVK mutation. Mevalonate kinase (MK) enzyme activity in leukocytes and renal excretion of mevalonic acid were also measured.Results. Mutations in the coding region of the MVK gene were detected in 6 patients, and the most common mutation was V377I. Among these patients were 2 novel mutations, both of which were located in exon 6. These novel mutations resulted in the substitution of tryptophan (TGG) by a stop codon (TGA) at amino acid position 188 (W188X) and in the exchange of valine (GTG) for alanine (GCG) at amino acid position 203 (V203A). In 1 patient, a combination of one MVK (V377I) mutation and one TNFRSF1A (R92Q) mutation was present. The patient's clinical phenotype resembled a mixture of variant-type HIDS and tumor necrosis factor receptor-associated periodic syndrome (TRAPS). Her IgD values varied between normal and slightly increased, and the MK activity was in the low-normal range, while urinary mevalonate concentrations were always normal.Conclusion. The genotype findings indicate that a relatively small number of genes may be involved in the clinical manifestation of HIDS, with low-penetrance TNFRSF1A variants possibly influencing the HIDS phenotype or MVK mutations contributing to TRAPS.The hyperimmunoglobulinemia D with periodic fever syndrome (HIDS; MIM no. 260920) is an autosomal recessively inherited autoinflammatory disease. It is characterized by febrile episodes of 3-7 days' duration recurring every 4-8 weeks and by a persistently high serum level of IgD (Ͼ100 IU/ml). Symptoms accompanying a typical attack comprise cervical lymphadeno-
We have elucidated the genetic defect in a 66-yr-old patient with fish eye syndrome (FES) presenting with severe corneal opacities and hypoalphalipoproteinemia. The patient's plasma concentration of high density lipoprotein (HDL) cholesterol was reduced at 7.7 mg/dl (35.1-65.3 mg/dl in controls) and the HDL cholesteryl ester content was 31% (60-80% in controls); however, total plasma cholesteryl esters were similar to normal (60% of total cholesterol vs. a mean of 66% in controls). The patient's plasma cholesterol esterification rate was slightly reduced at 51 nmol/ml per h (control subjects: 61-106 nmol/ml per h), whereas lecithin-cholesterol acyltransferase (LCAT) activity, assayed using a HDL-like exogenous proteoliposome substrate, was virtually absent (0.9 nmol/ml per h vs. 25.1-27.9 nmol/ml per h in control subjects). DNA sequence analysis of the proband's LCAT gene revealed two separate C to T transitions resulting in the substitution of Thr23 with Ile and Thr347 with Met. The mutation at codon 347 created a new restriction site for the enzyme Nla III. Analysis of the patient's polymerase chain reaction-amplified DNA containing the region of the Thr347 mutation by digestion with Nla III confirmed that the proband is a compound heterozygote for both defects. The patient's daughter, who is asymptomatic despite a 50% reduction of LCAT activity, is heterozygous for the Thr, Ile mutation. Our data indicate that the regions adjacent to Thr123 and Thr347 of LCAT may play an important role in HDL cholesterol esterification, suggesting that these regions may contain a portion of the LCAT binding domain(s) for HDL. (J.
Type HI hyperlipoproteinemia is characterized by delayed chylomicron and VLDL remnant catabolism and is associated with homozygosity for the apoE-2 allele. We have identified a kindred in which heterozygosity for an apoE mutant, apoE-1 (Lys'4-+Glu), is dominantly associated with the expression of type III hyperlipoproteinemia. DNA sequence analysis of the mutant apoE gene revealed a single-point mutation that resulted in the substitution of glutamic acid (GAG) for lysine (AAG) at residue 146 in the proposed receptor-binding domain of apoE. The pathophysiological effect of this mutation was investigated in vivo by kinetic studies in the patient and six normal subjects, and in vitro by binding studies of apoE-1 (Lys "-+Glu) to LDL receptors on human fibroblasts and to heparin. The kinetic studies revealed that apoE-1(Lys46-Glu) was catabolized significantly slower than apoE-3 in normals (P < 0.005). In the proband, the plasma residence times of both apoEs were substantially longer and the production rate of total apoE was about two times higher than in the control subjects. ApoE-1 (Lys'6-÷Glu) was defective in interacting with LDL receptors, and its ability to displace LDL in an in vitro assay was reduced to 7.7% compared with apoE-3. The affinity of apoE-1 (Lys "-+Glu) to heparin was also markedly reduced compared with both apoE-2(Argl58-+Cys) and apoE-3.These abnormal in vitro binding characteristics and the altered in vivo metabolism of apoE-1(Lys '46-+Glu) are proposed to result in the functional dominance of this mutation in the affected kindred. (J. Clin. Invest. 1995. 96:1100-1107.) Key words: atherosclerosis * dysbetalipoproteinemia * in vivo kinetics * low density lipoprotein (apoB, apoE) receptor binding * heparin binding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.