The percolation behavior of aligned rigid rods of length k (kmers) on two-dimensional square lattices has been studied by numerical simulations and finite-size scaling analysis. The kmers, containing k identical units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice. The process was monitored by following the probability R(L,k)(p) that a lattice composed of L×L sites percolates at a concentration p of sites occupied by particles of size k. The results, obtained for k ranging from 1 to 14, show that (i) the percolation threshold exhibits a decreasing function when it is plotted as a function of the kmer size; (ii) for any value of k (k>1), the percolation threshold is higher for aligned rods than for rods isotropically deposited; (iii) the phase transition occurring in the system belongs to the standard random percolation universality class regardless of the value of k considered; and (iv) in the case of aligned kmers, the intersection points of the curves of R(L,k)(p) for different system sizes exhibit nonuniversal critical behavior, varying continuously with changes in the kmer size. This behavior is completely different to that observed for the isotropic case, where the crossing point of the curves of R(L,k)(p) do not modify their numerical value as k is increased.
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel k-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density θc. Our study allowed us (1) to determine the dependence of θc on the size of the rods and the magnitude of the lateral interactions and (2) to obtain the critical exponents, which indicate that the transition belongs to the 2D Ising universality class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.