In this review article we describe spin-dependent transport in materials with spin-orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity.
We combine state-of-the-art large-scale first principles calculations with a low-energy continuum model to describe the nearly flat bands of twisted bilayer graphene at the first magic angle θ =1.08 • . We show that the energy width of the flat band manifold, as well as the energy gap separating it from the valence and conduction bands, can be obtained only if the out-of-plane relaxations are fully taken into account. The results agree both qualitatively and quantitatively with recent experimental outcomes.
In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these types of structures have to be settled for a neat identification of possible new entities. Through a systematic and complete set of measurements of the Josephson properties we find evidence of ballistic transport in coplanar Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the topological edge state. The shunting effect of the bulk only influences the normal transport. This behavior, which can be considered to some extent universal, is fairly independent of the specific features of superconducting electrodes. A comparative study of Shubnikov -de Haas oscillations and Scanning Tunneling Spectroscopy gave an experimental signature compatible with a two dimensional electron transport channel with a Dirac dispersion relation. A reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable step to drive Josephson junctions in the proper regime to detect possible distinctive features of Majorana fermions.
The electrical conductance of atomic metal contacts represents a powerful tool to detect nanomagnetism. Conductance reflects magnetism through anomalies at zero bias 1-7 -generally with Fano lineshapes -due to the Kondo screening of the magnetic impurity bridging the contact. 8, 9 A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, zero bias conductance anomalies are not presently calculable from atomistic scratch. In this Letter we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation 1 arXiv:0907.3422v1 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.