Though bad odour has always been associated with animal production, it did not attract much research attention until in many countries the odour production and emission from intensified animal production caused serious nuisance and was implicated in the health problems of individuals living near animal farms. Odour from pig production facilities is generated by the microbial conversion of feed in the large intestine of pigs and by the microbial conversion of pig excreta under anaerobic conditions and in manure stores. Assuming that primary odour-causing compounds arise from an excess of degradable protein and a lack of specific fermentable carbohydrates during microbial fermentation, the main dietary components that can be altered to reduce odour are protein and fermentable carbohydrates. In the present paper we aim to give an up-to-date review of studies on the relationship between diet composition and odour production, with the emphasis on protein and fermentable carbohydrates. We hypothesise how odour might be changed and/or reduced by altering the diet of pigs. Research so far has mainly focused on the single effects of different levels of crude protein and fermentable carbohydrates on odour production. However, also important for odour formation are the sources of protein and fermentable carbohydrates. In addition, it is not only the amount and source of these compounds that is important, but also the balance between them. On the basis of our review of the literature, we hypothesise that odour nuisance from pig production facilities might be reduced significantly if there is an optimum balance between protein and fermentable carbohydrates in the diet of pigs.
a b s t r a c tAn adaptation of fully automated gas production equipment was tested for its ability to simultaneously measure methane and total gas. The simultaneous measurement of gas production and gas composition was not possible using fully automated equipment, as the bottles should be kept closed during the incubations. A separate small opening with a screw cap and septum was made in each bottle, making it possible to take very small aliquots (10 l) from the gas in the headspace with a syringe for immediate gas analysis. As the used automatic gas production equipment was a venting system, corrections had to be made for the vented total gas and methane, as well as for the dilution of the produced methane with the gas in the headspace. To test the suitability and accuracy of the system, known amounts of methane were injected in bottles in the venting system and methane concentrations in the headspace were determined. It proved that the methane concentration in the headspace, corrected for the vented gas, coincided with the injected amount of methane. To show the potency of the adapted equipment, experiments were conducted with different feedstuffs. Total gas production and methane production were recorded and their relationships were calculated. The ability of the system to test feed additives for methane reduction was demonstrated for maize and soybean hulls as substrate (0.5 g DM), supplemented with monensin (15 mg), sodium-2-bromoethanesulphonate (BES, 15 mg), cinnemaldehyde (150 mg) and tea tannins (150 mg), additives known to effect methane synthesis. The adapted gas production equipment showed to be a powerful tool to determine rate and extent of gas production as a measure of fermentation and to simultaneously determine methane production.
This paper gives an insight into key factors, which impair enzymatic protein digestion. By nature, some proteins in raw products are already poorly digestible because of structural peculiarities, or due to their occurrence in plant cytoplasmic organelles or in cell membranes. In plant-based protein, molecular and structural changes can be induced by genetic engineering, even if protein is not a target compound class of the genetic modification. Other proteins only become difficult to digest due to changes that occur during the processing of proteinaceous products, such as extruding, boiling, or acidic or alkaline treatment. The utilization of proteinaceous raw materials in industrial fermentations can also have negative impacts on protein digestibility, when reused as fermentation by-products for animal nutrition, such as brewers' grains. After consumption, protein digestion can be impeded in the intestine by the presence of antinutritional factors, which are ingested together with the food or feedstuff. It is concluded that the encircling matrix, but also molecular, chemical, and structural peculiarities or modifications to amino acids and proteins obstruct protein digestion by common proteolytic enzymes in humans and animals.
Aims: A miniaturized adhesion test was designed to study the binding capacity of food and feed ingredients for bacterial cells. Methods and Results: Bacteria were allowed to adhere to different fibrous materials supplied as well coatings in microtitration plates. The amount of bacteria retained on the materials was determined in an automated way as growth after addition of liquid medium. The test principle was based on an inverse relationship between initial cell densities and the appearance of growth: The higher adhering cell numbers are, the shorter are the detection times of growth. The growth curves obtained were fitted by nonlinear regression analysis employing a sigmoidal curve model. Growth parameters as (i) the time after incubation at which half of the maximum growth yield was reached; (ii) the time‐coordinate of the point of inflection; (iii) the detection time calculated as x‐axis intercept of the maximum specific growth rate in the point of inflection; and (iv) the time‐coordinate of a growth detection threshold at OD = 0·05 were highly separating for the binding capacity of different food and feed ingredients for bacteria. Significance and Impact of the Study: With growth as measurand for adhesion, a simple, high‐throughput method was developed for the screening of huge numbers of different binding matrices and bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.