This document was developed through the collaborative efforts of the Society of Critical Care Medicine, the American College of Chest Physicians, and the Association of Organ Procurement Organizations. Under the auspices of these societies, a multidisciplinary, multi-institutional task force was convened, incorporating expertise in critical care medicine, organ donor management, and transplantation. Members of the task force were divided into 13 subcommittees, each focused on one of the following general or organ-specific areas: death determination using neurologic criteria, donation after circulatory death determination, authorization process, general contraindications to donation, hemodynamic management, endocrine dysfunction and hormone replacement therapy, pediatric donor management, cardiac donation, lung donation, liver donation, kidney donation, small bowel donation, and pancreas donation. Subcommittees were charged with generating a series of management-related questions related to their topic. For each question, subcommittees provided a summary of relevant literature and specific recommendations. The specific recommendations were approved by all members of the task force and then assembled into a complete document. Because the available literature was overwhelmingly comprised of observational studies and case series, representing low-quality evidence, a decision was made that the document would assume the form of a consensus statement rather than a formally graded guideline. The goal of this document is to provide critical care practitioners with essential information and practical recommendations related to management of the potential organ donor, based on the available literature and expert consensus.
Background Respiratory syncytial virus (RSV) can cause severe lower respiratory tract infection (LRI) and is a risk factor for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation (LTx). Currently, the most widely used therapy for RSV is inhaled ribavirin. However, this therapy is costly and cumbersome. We investigated the utility of using oral ribavirin for the treatment of RSV infection after LTx. Methods RSV was identified in nasopharyngeal swabs (NPS) or bronchoalveolar lavage (BAL) using direct fluorescent antibody (DFA) in 5 symptomatic LTx patients diagnosed with LRI. Data were collected from December 2005 and August 2007 and included: age; gender; type of LTx; underlying disease; date of RSV; pulmonary function prior to, during and up to 565 days post-RSV infection; need for mechanical ventilation; concurrent infections; and radiographic features. Patients received oral ribavirin for 10 days with solumedrol (10 to 15 mg/kg/day intravenously) for 3 days, until repeat NPS were negative. Results Five patients had their RSV–LRI diagnosis made at a median of 300 days post-LTx. Mean forced expiratory volume in 1 second (FEV1) fell 21% (p < 0.012) during infection. After treatment, FEV1 returned to baseline and was maintained at follow-up of 565 days. There were no complications and no deaths with oral therapy. A 10-day course of oral ribavirin cost $700 compared with $14,000 for nebulized ribavirin at 6 g/day. Conclusions Treatment of RSV after LTx with oral ribavirin and corticosteroids is well tolerated, effective and less costly than inhaled ribavirin. Further studies are needed to directly compare the long-term efficacy of oral vs nebulized therapy for RSV.
Development of primary graft dysfunction (PGD) is associated with poor outcomes after transplantation.We hypothesized that Receptor for Advanced Glycation End-products (RAGE) levels in donor lungs is associated with the development of PGD. Furthermore, we hypothesized that RAGE levels would be increased with PGD in recipients after transplantation. We measured RAGE in bronchoalveolar lavage fluid (BALf) from 25 donors and 34 recipients. RAGE was also detected in biopsies (transbronchial biopsy) from recipients with and without PGD. RAGE levels were significantly higher in donor lungs that subsequently developed sustained PGD versus transplanted lungs that did not display PGD. Donor RAGE level was a predictor of recipient PGD (odds ratio = 1.768 per 0.25 ng/mL increase in donor RAGE level). In addition, RAGE levels remained high for 14 days in those recipients that developed severe graft dysfunction. Recipients may be at higher risk for developing PGD if they receive transplanted organs that have higher levels of soluble RAGE prior to explantation. Moreover, the clinical and pathologic abnormalities associated with PGD posttransplantation are associated with increased RAGE expression. These findings also raise the possibility that targeting the RAGE signaling pathway could be a novel strategy for treatment and/or prevention of PGD.
Lung transplantation is a viable treatment option for select patients with end-stage lung disease. Two issues hamper progress in transplantation: first, donor shortage is a major limitation to increasing the number of transplants performed. Secondly, recipient outcomes remain disappointing when compared with other solid organ transplant results. Outcomes are limited by primary graft dysfunction (PGD), the posttransplant acute lung injury that increases both short-and long-term mortality. Attempts to overcome donor shortage have included aggressively managing solid organ donors to increase the number of donor lungs suitable for transplantation. Yet, the quality of the lung donor is likely to be related to the probability of the recipient experiencing PGD. PGD is the culmination of a series of insults, hemodynamic, metabolic, and inflammatory, that begin with the brain dead donor and result in poor recipient outcomes. Understanding the mechanism of donor lung injury resulting from brain death and the possible treatment strategies for its inhibition could help to increase the number of usable lungs and decrease the rate of PGD in the recipient. Here we present a review of the key pathways which result in donor lung injury, and follow this with a brief review of recent biomarkers that are proving to be instrumental to our ability to predict truly unsuitable lungs, and our ability to predict and hopefully prevent or treat recipients with subsequent lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.