Bicyclic P(CH2NMe)3P was synthesized, and its reactions with MnO2, elemental sulfur, p-toluenesulfonyl azide, BH3.THF, and W(CO)5(THF) were shown to furnish a variety of products in which the PC3 and/or the PN3 phosphorus are oxidized/coordinated. In contrast, reactions of the previously known P(CH2NPh)3P with Mo(0) and Ru(II) precursors were shown to afford products in which only the PC3 phosphorus is coordinated. The contrast in reactivity of P(CH2NR)3P (R = Me, Ph) with the aforementioned reagents is discussed in terms of steric and electronic factors. The new compounds are characterized by analytical and spectroscopic (IR, 1H, 31P, and 13C NMR) methods. The results of crystal and molecular structure X-ray analyses of the previously known compounds P(CH2O)3P and P(CH2NPh)3P and 6 of the 14 new compounds obtained in this investigation are presented. Salient features of these structures and the analysis of the Tolman cone angles calculated from their structural parameters are discussed in terms of the effects of constraint in the bicyclic moieties. Evidence is presented for greater M-P sigma bonding effects on coordination of the PC3 phosphorus of P(CH2NR)3P (R = Me, Ph) than are present in PMe3 analogues of group 6B metal carbonyls. From 1JBP data on the BH3 adducts of P(CH2NMe)3P, it is suggested that the free bases MeC(CH2NMe)3P < P(CH2NMe)3P < (Me2N)3P < P(MeNCH2CH2)3N increase in Lewis basicity at the PN3 phosphorus in the order shown. Substantial differences in 31P chemical shifts in the bicyclic compounds discussed herein relative to their acyclic analogues do not seem to be associated with the relatively small bond angle changes that occur around either the PN3 or the PC3 trivalent phosphorus atoms.
Die durch Substitutionsreaktion der cis‐Tetracarbonyl‐Komplexe (I) mit 2,6,7‐Trioxa‐1,4‐diphosphabicyclo[2.2.2]octan gebildeten monomeren 1:2‐Komplexe (II) reagieren bei 1:1‐molarer Umsetzung mit den Ausgangskomplexen (I) zu den homometallischen Makrocyclen (IIIa) oder den heterometallischen Analogen (IIIb).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.