Saturated and trans-fatty acids raise total cholesterol and LDL-cholesterol and are known to increase the risk of CHD, while dietary unsaturated fatty acids play important roles in maintaining cardiovascular health. Replacing saturated fats with unsaturated fats in the diet often involves many complex dietary changes. Modifying the composition of foods high in saturated fat, particularly those foods that are consumed daily, can help individuals to meet the nutritional targets for reducing the risk of CHD. In the 1960s the Dutch medical community approached Unilever about the technical feasibility of producing margarine with a high-PUFA and low-saturated fatty acid composition. Margarine is an emulsion of water in liquid oil that is stabilised by a network of fat crystals. In-depth expertise of fat crystallisation processes allowed Unilever scientists to use a minimum of solid fat (saturated fatty acids) to structure a maximum level of PUFA-rich liquid oil, thus developing the first blood-cholesterol-lowering product, Becel. Over the years the composition of this spread has been modified to reflect new scientific findings and recommendations. The present paper will briefly review the developments in fat technology that have made these improvements possible. Unilever produces spreads that are low in total fat and saturated fat, virtually free of trans-fatty acids and with levels of n-3 and n-6 PUFA that are in line with the latest dietary recommendations for the prevention of CHD. Individuals with the metabolic syndrome have a 2-4-fold increased risk of developing CHD; therefore, these spreads could make a contribution to CHD prevention in this group. In addition, for individuals with the metabolic syndrome the spreads could be further modified to address their unique dyslipidaemia, i.e. elevated blood triacylglycerols and low HDL-cholesterol. Research conducted in the LIPGENE study and other dietary intervention studies will deliver the scientific evidence to justify further modifications in the composition of spreads that are healthy for the heart disease risk factors associated with the metabolic syndrome.
Cardiovascular disease has a multifactorial aetiology, as is illustrated by the existence of numerous risk indicators, many of which can be influenced by dietary means. It should be recalled, however, that only after a cause-and-effect relationship has been established between the disease and a given risk indicator (called a risk factor in that case), can modifying this factor be expected to affect disease morbidity and mortality. In this paper, effects of diet on cardiovascular risk are reviewed, with special emphasis on modification of the plasma lipoprotein profile and of hypertension. In addition, dietary influences on arterial thrombotic processes, immunological interactions, insulin resistance and hyperhomocysteinaemia are discussed. Diet-ary lipids are able to affect lipoprotein metabolism in a significant way, thereby modifying the risk of cardiovascular disease. However, more research is required concerning the possible interactions between the various dietary fatty acids, and between fatty acids and dietary cholesterol. In addition, more studies are needed with respect to the possible importance of the postprandial state. Although in the aetiology of hypertension the genetic component is definitely stronger than environmental factors, some benefit in terms of the development and coronary complications of atherosclerosis in hypertensive patients can be expected from fatty acids such as α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid. This particularly holds for those subjects where the hypertensive mechanism involves the formation of thromboxane A2and/or α1-adrenergic activities. However, large-scale trials are required to test this contention. Certain aspects of blood platelet function, blood coagulability, and fibrinolytic activity are associated with cardiovascular risk, but causality has been insufficiently proven. Nonetheless, well-designed intervention studies should be initiated to further evaluate such promising dietary components as the variousn−3 andn−6 fatty acids and their combination, antioxidants, fibre, etc. for their effect on processes participating in arterial thrombus formation. Long-chain polyenes of then−3 family and antioxidants can modify the activity of immunocompetent cells, but we are at an early stage of examining the role of immune function on the development of atherosclerotic plaques. Actually, there is little, if any, evidence that dietary modulation of immune system responses of cells participating in atherogenesis exerts beneficial effects. Although it seems feasible to modulate insulin sensitivity and subsequent cardiovascular risk factors by decreasing the total amount of dietary fat and increasing the proportion of polyunsaturated fatty acids, additional studies on the efficacy of specific fatty acids, dietary fibre, and low-energy diets, as well as on the mechanisms involved are required to understand the real function of these dietary components. Finally, dietary supplements containing folate and vitamins B6and/or B12should be tested for their potential to reduce cardiovascular risk by lowering the plasma level of homocysteine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.