A small proportion of atomic nuclei can form highly excited metastable states, or isomers. Of particular interest is a class of isomers found in deformed axially symmetric nuclei; these isomers are among the longest-lived and have the potential to reach the highest energies. By probing their properties, insights into nuclear structure have been gained. The possibility of stimulated isomer decay may ultimately lead to new forms of energy storage and g-ray lasers.
Configuration-constrained calculations of potential-energy surfaces in even-even superheavy nuclei reveal systematically the existence at low excitation energies of multiquasiparticle states with deformed axially symmetric shapes and large angular momenta. These results indicate the prevalence of long-lived, multiquasiparticle isomers. In a quantal system, the ground state is usually more stable than the excited states. In contrast, in superheavy nuclei the multiquasiparticle excitations decrease the probability for both fission and alpha decay, implying enhanced stability. Hence, the systematic occurrence of multiquasiparticle isomers may become crucial for future production and study of even heavier nuclei. The energies of multiquasiparticle states and their alpha decays are calculated and compared to available data.
Abstract.The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.