This guide deals with methods to control surface charging during XPS analysis of insulating samples and approaches to extracting useful binding energy information. The guide summarizes the causes of surface charging, how to recognize when it occurs, approaches to minimize charge buildup, and methods used to adjust or correct XPS photoelectron binding energies when charge control systems are used. There are multiple ways to control surface charge buildup during XPS measurements and examples of systems on advanced XPS instruments are described. There is no single, simple, and foolproof way to extract binding energies on insulating material, but advantages and limitations of several approaches are described. Because of the variety of approaches and limitations of each it is critical for researchers to accurately describe the procedures that have been applied in research reports and publications.
Polystyrene (PS) surfaces were treated by electron-beam-generated plasmas in argon/oxygen, argon/nitrogen, and argon/sulfur hexafluoride environments. The resulting modifications of the polymer surface energy, morphology, and chemical composition were analyzed by a suite of complementary analytical techniques: contact angle goniometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and reflection electron energy loss spectroscopy (REELS). The plasma treatments produced only minimal increases in the surface roughness while introducing the expected chemical modifications: oxygen-based after Ar/O(2) plasma, oxygen- and nitrogen-based after Ar/N(2) plasma, and fluorine-based after Ar/SF(6) plasma. Fluorinated PS surfaces became hydrophobic and did not significantly change their properties over time. In contrast, polymer treated in Ar/O(2) and Ar/N(2) plasmas initially became hydrophilic but underwent hydrophobic recovery after 28 days of aging. The aromatic carbon chemistry in the top 1 nm of these aged surfaces clearly indicated that the hydrophobic recovery was produced by reorientation/diffusion of undamaged aromatic polymer fragments from the bulk rather than by contamination. Nondestructive depth profiles of aged plasma-treated PS films were reconstructed from parallel angle-resolved XPS (ARXPS) measurements using a maximum-entropy algorithm. The salient features of reconstructed profiles were confirmed by sputter profiles obtained with 200 eV Ar ions. Both types of depth profiles showed that the electron-beam-generated plasma modifications are confined to the topmost 3-4 nm of the polymer surface, while valence band measurements and unsaturated carbon signatures in ARXPS and REELS data indicated that much of the PS structure was preserved below 9 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.