Analyzing one of the most extensive long-term data series in the North Sea, the Helgoland Roads time series, we investigated the changes in the factors that potentially drive phytoplankton bloom dynamics in the German Bight. We compared the changes in these factors with the changes in the spring bloom phenology. We combined zooplankton, nutrient, weather, and phytoplankton data to analyze whether there has been a shift in trophic interactions in the North Sea affecting the spring bloom timing. The potential influence of temperature, with a mean increase of 1.5uC, was investigated. We showed that the German Bight around Helgoland is a highly dynamic system and has undergone considerable change in the last 30 yr. Nutrient levels, temperature, underwater light climate and wind speed have all changed. However, the spring bloom dynamics have hardly changed at all. We showed that the spring bloom tends to come later in warmer years but that this is not directly correlated with the overall warming trend. The known regime shift of the late 1980s is clearly visible in our data in terms of average phytoplankton winter densities and average cell size, but even so the start of the spring bloom has not changed.
The human impact in the German Bight, in the form of anthropogenic eutrophication, has been documented by a 30-year time-series measurement near the island of Helgoland. Since 1962, the Biologische Anstalt Helgoland has measured inorganic nutrients and phytoplankton abundance from daffy samples at Helgoland Roads, a position 60 km off the main source of eutrophication, the River Elbe. Since the early 'sixties, phosphate concentrations rose for about a decade, levelling off to about twice the former concentrations for another decade, and then decreasing (since 1982) as a result of phosphate-reducing measures. Nitrate concentrations, however, have only increased since 1980/81, following Elbe river flood events. In 1987, three times the former concentrations were reached. A decrease has been observed only since 1991. This different development of phosphorus and nitrogen eutrophication led to a shift of inorganic N/P-ratios in the German Bight. The phosphate increase was more pronounced in the late summer "regeneration mode" conditions, the nitrate increase in the winter months. The eutrophication is not restricted to the inner German Bight and coastal waters of a salinity of < 33, but has also occurred in more saline waters at S > 33 psu (practical salinity unit), as characteristic for the outer German Bight. In this more saline water, phosphate and nitrate maximum levels occurred three years later, compared with the average Helgoland data, which are more representative of the inner German Bight. It is suggested that suspended particulate organic matter, as a long-distance carrier of nutrients, might have caused this delayed eutrophication in the outer German Bight waters. While the human impact is obvious as to nutrient concentrations, it is less obvious in phytoplankton stock enhancement. A general increase in phytoplankton biomass (about 3-4 times) was found, but this was mainly due to unidentified nanoflagellates of unknown trophic state, and subject to methodological errors. The causal relationships of phytoplankton stocks and eutrophication are not clearly understood, as natural variability is large and hydrographical factors possibly dominate. Additional nutrient input by Elbe river floods did not always result in elevated phytoplankton stocks near Helgoland, while extended periods of vertical density stratification of the German Bight water caused large plankton blooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.