Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.
Thymus and Activation-Regulated Chemokine (TARC) may be critical in Th2 cell recruitment in allergic inflammation; however, the mechanisms of allergen-induced TARC release are unclear. Since airway epithelium is the first line of defense to inhaled allergens, we questioned whether house dust mite allergen (Der p) can induce TARC expression in bronchial epithelial cells, how this is regulated at the molecular level, and if micro-environmental cytokines augment this effect. We examined the effects of Der p and the cytokines IL-4 and TGF-beta on TARC expression in 16HBE cells and primary bronchial asthma epithelium. Real-time PCR and immunofluorescence demonstrated that Der p induces TARC expression in bronchial epithelium. Supernatants from Der p-stimulated 16HBE cells were able to induce TARC-dependent T cell trafficking. IL-4 and TGF-beta cooperatively enhanced Der p-induced TARC expression in 16HBE cells. Specific inhibitors, immunodetection, and gel-shifts revealed that these effects are mediated by phosphorylation of the epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK) signaling and subsequent nuclear factor (NF)-kappaB activation. A Disintegrin And Metalloproteinase (ADAM), a family of proteins involved in shedding of various growth factors, was shown to be responsible for EGFR activation. The increase in TARC production by direct interaction of Der p with the bronchial epithelium may be an important initial step in the generation of allergic inflammation, which is further potentiated by micro-environmental cytokines. Interference with ADAM or EGFR activity may be a novel promising target to prevent TARC release and subsequent allergic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.