This paper presents an integrated circuit (IC) array whose purpose is to observe, quantify and characterize the impact of time-dependent variability effects, like aging, in several widely used digital and analog circuit blocks. With the increasing interest that this kind of mechanism has attracted in the last years, for its potential impact in the reliability of ultrascaled integrated circuits, it is only relevant that appropriate measures are taken to find out how it can be included (and thus mitigated) in the design process of such integrated circuits. And, while substantial literature exists that covers the device level, time-dependent variability at circuit level has not been as equally studied. This work complements our previous efforts in providing a holistic approach to Reliability-Aware Design: from statistical characterization and modeling at device-level, to simulation, and into optimization-based design with reliability considerations, the array presented here provides one more step towards a thorough and accurate understanding of how timedependent variability works at the circuit level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.