Follicular growth rates were studied in 5 Hereford-Holstein cross heifers on Day 14 of the oestrous cycle. The granulosa cell mitotic index (MI) was measured in non-atretic antral follicles of various diameters (0.13-8.57 mm) from Bouin-fixed ovaries collected before (199, control) and 2 h after colchicine treatment (189, treated). In control ovaries, follicles of 0.68-1.52 mm had a higher MI than those of other size classes (P less than 0.05). In colchicine-treated ovaries, the MI of follicles ranging from 0.68 to 8.57 mm increased more than that of other sized follicles, so that the mitotic time was shorter (0.78 h vs 1.32 h) in medium and large sized follicles (0.68-8.57 mm) than in smaller follicles (0.13-0.67 mm). Calculations based on the number of granulosa cells in follicles of various classes and from the time required to double the number of cells within a follicle indicate that a follicle takes 27 days to grow from 0.13 to 0.67 mm, 6.8 days from 0.68 to 3.67 mm and 7.8 days from 3.68 to 8.56 mm, indicating that growth rates varied with the size of the follicle. A period equivalent to 2 oestrous cycles would therefore be required for a follicle to grow through the antral phase, i.e. from 0.13 mm to preovulatory size. Increased MI, decreased mitotic time and increased atresia found in follicles larger than 0.68 mm could indicate a change in the follicular metabolism during its maturation.
Dairy heifers were superovulated in the presence (dominant group, N = 8) or absence (non-dominant group, N = 6) of a dominant follicle at the start of a a superovulatory treatment on Days 7-12 of the oestrous cycle (Day 0 = oestrus). Daily ultrasonographic observations of ovaries (recorded on videotape) starting on Day 3 were used to assess the presence or absence of a dominant follicle (diameter greater than 9 mm, in a growing phase or at a stable diameter for less than 4 days) and to monitor follicular development before and during treatment. The number of CL estimated by ultrasonography (7.1 +/- 1.8 vs 13.5 +/- 1.4) or by rectal palpation (6.9 +/- 2.0 vs 16.3 +/- 1.6) and mean progesterone concentrations (32.5 +/- 19 vs 80.7 +/- 16 ng/ml) after treatment were lower (P less than 0.01) in the dominant than in the non-dominant group. Based on number of CL, two populations of heifers were identified in the dominant group, i.e. those that had a high (dominant-high, N = 4; greater than 7 CL) or a low (dominant-low, N = 4; less than 7 CL) response to treatment. During treatment, the increases in number of follicles 7-10 mm and greater than 10 mm in diameter occurred sooner and were of higher magnitude in the non-dominant than in the dominant-high or dominant-low groups (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
The objectives were to determine the relationships between changes in the levels of histological and biochemical (estradiol [E2]:androstenedione [A], E2:A ratio) atresia and changes in inhibin contents of morphologically dominant follicles collected during the growing or the regressing phase of the first wave of follicular development in cycling crossbred beef heifers. Heifers were slaughtered either when the dominant follicle (> or = 9 mm; diameter of the antral cavity as assessed by ultrasonography) of the first wave was still growing (n = 7) or when the first dominant follicle (> or = 9 mm; n = 7) was regressing or was at the end of the plateau phase. Following ovary collection, the dominant follicle was dissected and level of histological atresia was determined on sections of follicular walls. Aliquots of follicular fluid from each of the dominant follicles were collected to measure concentrations of E2, A, and inhibin alpha subunit by RIA and to measure concentrations of dimeric (alpha-beta dimer) inhibin by a two-site immunoradiometric assay. Heifers were slaughtered on Days 5.4 +/- 0.5 (growing phase) and 11.8 +/- 0.5 (regressing phase) of the estrous cycle, and mean diameter of the dominant follicles was similar in both phases (9.9 +/- 0.4 vs. 10.8 +/- 0.4 mm; p > 0.09). All morphologically dominant follicles collected during the growing phase (7/7) were histologically healthy and estrogen-active (E2:A ratio > 1), while those collected during the regressing phase (7/7) were histologically atretic and estrogen-inactive (E2:A ratio < 1; chi 2 = 14.0, p < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)
Histological indices of atresia for bovine follicles greater than or equal to 5 mm in diameter were compared with potential non-histological indices of atresia such as opaqueness of the exposed surface of non-excised follicles, concentrations of steroids in follicular fluid (FF) and specific binding of gonadotropins by granulosal cells. Each non-excised follicle was classified as clear (n=86), intermediate (n=79), or opaque (n=115), on the basis of the appearance of its exposed surface. A section of tissue from each follicle was evaluated histologically for atresia and assigned to one of the following categories: non-atretic, intermediately atretic, strongly atretic, or luteinized-atretic. Concentrations of estradiol (E), progesterone (P), and testosterone (T) and capacity of granulosal cells to bind radioactive ovine follicle-stimulating hormone (oFSH) and human chorionic gonadotropin (hCG) were determined for each follicle. Overall incidence of atresia was similar for clear (n=66%), intermediate (60%), and opaque (72%) follicles. Opaque follicles, however, were more likely to be strongly atretic (42%) than were clear (21%) or intermediate (23%) follicles. Non-atretic and intermediately atretic follicles had similar concentrations of E, P, and T and similar capacities to bind gonadotropins. Strongly atretic and luteinized-atretic follicles contained a higher concentration of P, lower E, and a reduced capacity of granulosal cells to bind oFSH than non-atretic and intermediately atretic follicles. A ratio of P:E in FF greater than or equal to 10 usually (greater than 90%) indicated that a follicle was atretic. However, lesser ratios of P:E did not accurately indicate whether follicles were atretic.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.