In the face of an “epidemic” increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this “myopia booming” and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children.
In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision.
Brain-derived neurotrophic factor (BDNF) is a cognate ligand for the TrkB receptor. BDNF and serotonin often function in a cooperative manner to regulate neuronal plasticity, neurogenesis, and neuronal survival. Here we show that NAS (N-acetylserotonin) swiftly activates TrkB in a circadian manner and exhibits antidepressant effect in a TrkB-dependent manner. NAS, a precursor of melatonin, is acetylated from serotonin by AANAT (arylalkylamine Nacetyltransferase). NAS rapidly activates TrkB, but not TrkA or TrkC, in a neurotrophin-and MT3 receptor-independent manner. Administration of NAS activates TrkB in BDNF knockout mice. Furthermore, NAS, but not melatonin, displays a robust antidepressant-like behavioral effect in a TrkB-dependent way. Endogenous TrkB is activated in wild-type C3H/f +/+ mice but not in AANAT-mutated C57BL/ 6J mice, in a circadian rhythm; TrkB activation is high at night in the dark and low during the day. Hence, our findings support that NAS is more than a melatonin precursor, and that it can potently activate TrkB receptor.B rain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which includes nerve growth factor, NT-3, NT-4, and NT-5 (1). BDNF binding to TrkB triggers its dimerization through conformational changes and autophosphorylation of tyrosine residues in its intracellular domain, leading to activation of the three major downstream signaling cascades including mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase, and phospholipase C-γ1 (2, 3). Through these pathways, BDNF mediates a variety of neuronal activities involved in neuronal survival, neurogenesis, synaptic plasticity, and so forth, and is implicated in numerous neurological diseases. For instance, loss of BDNF plays a major role in the pathophysiology of depression, and its restoration that induces neuroplastic changes may underlie the action of antidepressant efficacy (4-7).Daily rhythms in indole metabolism are a unique characteristic of the pineal gland. Pineal serotonin (5-HT) levels are higher during the day than at night. Conversely, pineal N-acetylserotonin (NAS) and melatonin levels are low during the day and high at night (8). The switch between day and night profiles of pineal indoles is predominantly regulated by the activity of arylalkylamine N-acetyltransferase (AANAT), which escalates at night 10-to 100-fold (9). AANAT metabolizes serotonin into NAS. AANAT mRNA is prominently expressed in the pineal gland and retina, and weakly in other regions of brain (10-12). NAS is mainly synthesized in the pineal gland, and is subsequently methylated by hydroxyindole-O-methyltransferase to synthesize melatonin. Until recently, NAS was considered only as the precursor of melatonin in the process of melatonin biosynthesis from serotonin. Melatonin is highly lipophilic and is not stored at significant levels. Accordingly, it is released into the blood immediately upon synthesis. Melatonin's role in the regulation of circadian rhythms and other functions is mediated primarily by me...
Aggregated forms of α-synuclein play a crucial role in the pathogenesis of synucleinopathies such as Parkinson’s disease (PD). However, the molecular mechanisms underlying the pathogenic effects of α-synuclein are not completely understood. Here we show that asparagine endopeptidase (AEP) cleaves human α-synuclein, triggers its aggregation and escalates its neurotoxicity, thus leading to dopaminergic neuronal loss and motor impairments in a mouse model. AEP is activated and cleaves human α-synuclein at N103 in an age-dependent manner. AEP is highly activated in human brains with PD, and it fragments α-synuclein, which is found aggregated in Lewy bodies. Overexpression of the AEP-cleaved α-synuclein1–103 fragment in the substantia nigra induces both dopaminergic neuronal loss and movement defects in mice. In contrast, inhibition of AEP-mediated cleavage of α-synuclein (wild type and A53T mutant) diminishes α-synuclein’s pathologic effects. Together, these findings support AEP’s role as a key mediator of α-synuclein-related etiopathological effects in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.