Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue and establish distant metastases. A hallmark of EMT is the loss of E-cadherin expression, and one major signal for the induction of EMT is transforming growth factor beta (TGFβ), which is dysregulated in up to 40% of hepatocellular carcinoma (HCC). We aim to identify network perturbations that suppress TGFβ-driven EMT, with the goal of suppressing invasive properties of cancer cells. We use a systems-level Boolean dynamic model of EMT to systematically screen individual and combination perturbations (inhibition or constitutive activation of up to four nodes). We use a recently developed network control approach to understand the mechanism through which the combinatorial interventions suppress EMT. We test the results of our in silico analysis using siRNA. Our model predicts that targeting key elements of feedback loops in combination with the SMAD complex is more effective than suppressing the SMAD complex alone. We demonstrate experimentally that expression of a majority of these elements is enriched in mesenchymal relative to epithelial phenotype HCC cell lines. An siRNA screen of the predicted combinations confirms that many targeting strategies suppress TGFβ-driven EMT measured by E-cadherin expression and cell migration. Our analysis reveals that some perturbations give rise to hybrid states intermediate to the epithelial and mesenchymal states. Our results indicate that EMT is driven by an interconnected signaling network and many apparently successful single interventions may lead to steady states that are in-between epithelial and mesenchymal states. As these putative hybrid or partial EMT states may retain invasive properties, our results suggest that combinatorial therapies are necessary to fully suppress invasive properties of tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.