The paper deals with buckling and strength analysis of suspension system rods made of carbon fibre reinforced polymer (CFRP) laminate. The whole suspension system of urban solar vehicle, Eagle Two, designed by Lodz University of Technology students was considered. The calculations and analysis focused on suspension rods, where the traditional metal material was replaced with CFRP laminate. The influence of layer arrangement on rod strength, static, and dynamic buckling were analysed. The research was conducted using numerical simulations employing finite element method software. The static and dynamic load was considered. The obtained results show that the plies’ order in the laminate influences both the strength and stiffness of the considered rod. The best results considering both failure force and longitudinal elasticity modulus were obtained for the stacking sequences with axially oriented (0°) plies on the outside of the rod.
The purpose of the research was to design a solar vehicle for Bridgestone World Solar Challenge competition which takes place biannually in Australia. The article, however, presents the aerodynamic research on the car body, especially on the exit diffuser. Numerous CFD simulations of different diffuser shapes were performed in ANSYS CFX software. The paper presents the results of pressure distribution on the body and velocity contours. The drag force acting on the car body is dependent on the pressure distribution. The article includes comparison of corresponding drag coefficient values for different cases. Furthermore, the variation of the lift force depending on the shape of the bodywork was also taken into consideration. The research shows that slight differences in the construction of the exit diffuser correspond to noticeable changes in the drag coefficient values (0.138 minimum, 0.168 maximum) and significant changes in the lift force (minimum 71 N, maximum 160 N).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.