The bandwidth penalty of digital systems is very obvious in the case of transmission over coaxial cables because of the exponential increase of cable attenuation with square root of frequency. From capacity point of view, it is only at very high information rates (> 500Mbit/s typically) that a digital system might be competitive with an analog system, because the disadvantage of noise accumulation in an analog system ultimately cancels the bandwidth penalty of the digital system.In addition, it is, however, difficult to realize common functions, such as amplification, equalization, regeneration, clock extraction, etc. with electronic components having a frequency range comparable to the frequency range of the information signal, which extends from zero frequency to the microwave range. Besides, the complexity of a regenerative repeater should be kept to a minimum for reliability reasons.It is shown in the paper that with present-day technology a 560 Mbit/s repeater cah be constructed, operating in sections of 1.5 km coaxial cable (2.6/9.5 mm). Also, we demonstrate that new technologies exist which may lead to repeaters with a high degree of monolithic integration, even at such a speed, which is important from the reliability viewpoint. The constructed and described repeater is characterized by unconventional and economic design of amplifier/equalizer and clock extractor and by monolithically integrated decision circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.