Coppice silviculture has a long tradition in Italy. Societal demands have led to the development of forest management techniques for integrating wood production with other kinds of forest uses and regulations have been issued to limit forest degradation. In Italy, 35% of the national forest cover is currently managed under coppice silvicultural systems that provide 66% of the annual wood production. Fuel-wood demand is increasing and a large amount of fuelwood is currently imported in Italy. Modern coppice practices differ from those adopted in the past and may have a reduced impact on ecosystem characteristics and processes. Nevertheless, coppice silviculture has a bad reputation mostly on grounds that are beyond economic, technical and ecological rationales. Neither cessation of use nor a generalized conversion from coppice to high forest are likely to respond simultaneously to the many demands deriving from complex and articulated political and economic perspectives operating at global, European, national, regional and forest stand-level scales. Different approaches of modern silviculture to coppice successfully tested in Italy for more than a decade are illustrated. We propose to combine different options at the stand and sub-stand level, including either development without human interference or conversion to high forest, and to apply these approaches within the framework of novel forest management plans and regionally consistent administrative procedures. This bottom-up approach represents a potential solution to the socio-economic and environmental challenges affecting coppicing as a silvicultural system.
The new SEAS5 global ensemble forecast system was dynamically downscaled over the Horn of Africa for summer (June-July-August) 2018. For this purpose, a multi-physics ensemble was designed with a grid increment of 3 km and without any intermediate nest based on the Weather Research and Forecasting model (WRF). The WRF and the SEAS5 model output were compared with each other and reference datasets to assess the biases in 4 different regions of Ethiopia. Also, the WRF ensemble variability was investigated in relation to model parameterization and lateral boundary conditions. Over the summer, the SEAS5 has a positive temperature bias of 0.17 C compared to ECMWF analysis average for the study domain, while the WRF bias is +1.14 C. Concerning precipitation, the WRF model had average accumulated values of 264 mm, compared to 248 mm for SEAS5 and 236 mm for the observations. Over south Ethiopia, however, the downscaling produced over 50% more precipitation than the other datasets. The maximum northward extension of the tropical rain belt was reduced by about 2 in both models when compared to observations. Downscaling increased reliability for precipitation, correcting the SEAS5 underdispersion: ensemble spread for precipitation was increased by about 70% in the WRF ensemble in three of the four Ethiopian sub-regions, whereas the very dry Somali region remained unaffected. The WRF ensemble analysis revealed that the ensemble spread is mainly caused by the perturbed boundary conditions, as their effect is often 50% larger than the physicsinduced variability in the mountainous part of Ethiopia for precipitation and temperature.
<p>Studies have shown the benefits of convection-permitting downscaling at the seasonal scale using limited-area models. To evaluate the performance with real forecasts as boundary conditions, four members of the SEAS5 global ensemble were dynamically downscaled over Ethiopia during June, July, and August 2018 at a 3-km resolution. We used a multi&#8208;physics ensemble based on the WRF model to compare the effects of boundary conditions and physics <span><span>parametrization</span></span> producing 16 ensemble members. With ECMWF analyses as a reference, SEAS5 averaged to a +0.17&#176;C bias over Ethiopia whereas WRF resulted in +1.14&#176;C. With respect to precipitation, the WRF model simulated 264 mm compared to 248 mm for SEAS5 and 236 mm for GPM-IMERG. The maximum northward extension of the tropical rain belt decreased by about 2&#176; in both models. Downscaling enhanced the ensemble spread in precipitation by 60% on average, correcting the SEAS5 underdispersion. The WRF ensemble spread over Ethiopia was mostly generated by the perturbed boundary conditions, as their effect is often 50% larger than the physics&#8208;induced variability. The results indicate that boundary condition perturbations are necessary, although not always sufficient, to generate the right amount of ensemble spread in a limited-area model with complex topography. The next step is to use specific methods to calculate the added value provided by the downscaling.</p>
On the protection of cultural heritage in forest landscapes According to the European Landscape Convention (ELC), a landscape means "an area, as perceived by people, whose character is the result of the action and interaction of natural and/or human factors". Therefore, both human actions and natural processes play a role in shaping the landscape, which is, by this definition, ever changing. "Protecting" the landscape therefore means understanding, accepting and preserving such agents of change that have created it. Conversely, protective measures should not be designed to "freeze time", nor to restore natural or human-influenced landscape features that have long ceased to exist. These basic concepts, delineated 20 years ago in Florence, are met in some parts of Italy by a dubious interpretation. Landscape protection agencies (Soprintendenze Archeologia Belle Arti e Paesaggio) seem to be oriented towards stopping or limiting the traditional activities that have shaped the current Italian forest landscape, with the purpose of increasing the forest cover for "aesthetic" reasons. Such narrow view contradicts the aims of the ELC and of the related national rules and mechanisms of landscape conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.