Carbon implantation can be effectively used for axial minority charge carriers’ lifetime control in various silicon bulk and epitaxial planar structures. When carbon is implanted, more stable recombination centres are formed and silicon is not doped with additional impurities, as for example, when irradiated with protons or helium ions. Economically, such a process competes with alternative methods, and is more efficient for obtaining small lifetimes (several nanoseconds). I-3 ion injector with laser-plasma ion source at Institute for theoretical and experimental physics (ITEP) is used as ion implanter in semiconductors. The ion source uses pulsed CO2 laser setup with radiation-flux density of 1011 W/cm2 at target surface. The ion source produces beams of various ions from solid targets. The generated ion beam is accelerated in the two gap RF resonator at voltage of up to 2 MV per gap. Resulting beam energy is up to 4 MV per charge. Parameters of carbon ion beam generated and used for semiconductor samples irradiation during experiments for axial minority charge carriers lifetime control in various silicon bulk and epitaxial planar structures are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.