Root exclusion experiments demonstrated the importance of belowground competition between grasses and Prosopis glandulosa (honey mesquite) during the critical seeding establishment phase of the woody plant life cycle. Belowground available volume accounted for 67% and 79% of the variance in first‐ and second‐year Prosopis seedling growth and survival, respectively. Available volume in the vertical dimension was more important than that in the horizontal dimension. Trials spanned years with contrasting annual precipitation, suggesting that root competition occurs in years of near‐average as well as below‐average annual rainfall. Spatial heterogeneity in canopy gaps and belowground biomass was also quantified in a Schizachayriuim–Paspalum grassland matrix and evaluated with respect to Prosopis seedling establishment. Of the 100 grid points encountered in four grass stands, 62% were unoccupied; and 50% of these exceeded 80 cm2 (∼10 cm diameter). Gaps ≥ 10 cm in diameter were sufficient for successful Prosopis germination and survival after one (40%) and two (15%) growing seasons. Herbaceous root biomass was statistically comparable among stands, but point‐specific biomass varied three orders of magnitude (<50 g/m2 to >3000 g/m2). In addition, root biomass was temporally variable, ranging from a mean (±1 se; g/m2) of 768 (86) in a year of below‐average annual rainfall (1996; 721 mm) to 1108 (104) in a year of roughly average annual rainfall (1995; 1032 mm). It is often assumed that grasslands dominated by productive, late seral species will be resistant to woody plant encroachment; and that grazing, by reducing the ability of grasses to competitively exclude woody seedlings, makes grasslands susceptible to tree/shrub invasion. However, given the substantial annual variation in belowground biomass observed in this study, it seems reasonable that ungrazed grasslands may be more susceptible to woody plant encroachment in some years and more resistant in others. Furthermore, given the substantial spatial variation in aboveground gap area and belowground biomass, there may be numerous low‐competition microsites for woody plant seedlings within ungrazed grasslands. A high degree of temporal and spatial variability in gap area and belowground biomass may therefore help explain successful establishment of woody seedlings in ungrazed or lightly grazed, late seral grasslands in the absence of fire. We found no correlation between aboveground structure and belowground biomass at scales of 1–10 m2. Thus, readily quantifiable attributes such as grass basal area or gap area could not be used to infer site susceptibility to woody plant seedling establishment.
Corresponding Editor: S. Lavorel.
Juniperus woodlands are widely distributed in western North America. Few studies of seedling emergence, longterm survival, growth or mortality of the dominant Juniperus spp. in these woodlands have been carried out. Consequently, regeneration dynamics in these woodlands are poorly understood. Juniperus ashei is the dominant woody plant in the majority of woodland and savanna communities of the Edwards Plateau region in central Texas. We examined the emergence, mortality and growth of various spatial and temporal cohorts of J. ashei seedlings over an eight or nine-year period. Greatest emergence was found during the cool, mostly winter months and under the canopy of mature J. ashei trees. Emergence was significantly inversely related to temperature and significantly linearly related to rainfall, but only if the monthly rainfall and emergence were offset by one to four months. Greatest survival occurred below the J. ashei canopy, but greatest growth was at the canopy edge. Emerging seedlings were not from the current year's seed crop, but from one or more previous year's seed crops. Greatest mortality occurred mostly during the summer months and in the grassland habitat. There was a significant inverse logarithmic or exponential relationship between mean monthly temperature and mean monthly mortality. A large number of J. ashei seedlings or immature plants with reduced growth were found beneath the canopy of mature trees. These plants seem to serve as a seedling bank, providing the source of recruitment into the population should the overstory trees be removed. Survival of the two canopy cohorts with known emergence dates declined with time ͑negative exponential function͒ and was 1.0-3.4% after eight or nine years depending on the cohort. The pre-existing cohort seemed to have constant mortality ͑and presumably replacement͒, with about 8% of the population dying each year. Higher growth rates for seedlings were found at the edge of the established woodland canopy, which suggests that conditions in the edge habitat or possibly in canopy gaps are best for growth beyond the seedling stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.