A correct first assessment of a skin burn depth is essential as it determines a correct first burn treatment provided to the patients. The objective of this paper is to conduct a comparative study of the different segmentation algorithms for the classification of different burn depths. Eight different hybrid segmentation algorithms were studied on a skin burn dataset comprising skin burn images categorized into three burn classes by medical experts; superficial partial thickness burn (SPTB), deep partial thickness burn (DPTB) and full thickness burn (FTB). Different sequences of the algorithm were experimented as each algorithm was able to segment differently, leading to different segmentation in the final output. The performance of the segmentation algorithms was evaluated by calculating the number of correctly segmented images for each burn depth. The empirical results showed that the segmentation algorithm that was able to segment most of the burn depths had achieved 40.24%, 60.42% and 6.25% of correctly segmented image for SPTB, DPTB and FTB respectively. Most of the segmentation algorithms could not segment well for FTB images because of the different nature of the burn wounds as some of the FTB images contained dark brown and black colors. It can be concluded that a good segmentation algorithm is required to ensure that the representative features of each burn depth can be extracted to contribute to higher accuracy of classification of skin burn depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.