We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO 2 (80%) + N 2 (20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIγS) JINST 5 P12004facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm 3 . Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N 2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data.The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148 Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12 C particles from the dissociation of 16 O and of three alpha-particles from the dissociation of 12 C have been measured during initial in-beam test experiments performed at the HIγS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.
The NPDGamma collaboration reports results from the first phase of a measurement of the parity violating up-down asymmetry Aγ with respect to the neutron spin direction of γ-rays emitted in the reaction n + p → d + γ using the capture of polarized cold neutrons on the protons in a liquid parahydrogen target. One expects parity-odd effects in the hadronic weak interaction (HWI) between nucleons to be induced by the weak interaction between quarks. Aγ in n + p → d + γ is dominated by a ∆I = 1, 3 S1 − 3 P1 parity-odd transition amplitude in the n-p system. The first phase of the measurement was completed at the Los Alamos Neutron Science Center spallation source (LANSCE) with the result Aγ = (−1.2 ± 2.1 stat. ± 0.2 sys.) × 10 −7 . We also report the first measurement of an upper limit for the parity allowed left right asymmetry in this reaction, with the result Aγ,LR = (−1.8 ± 1.9 stat. ± 0.2 sys.) × 10 −7 . In this paper we give a detailed report on the theoretical background, experimental setup, measurements, extraction of the parity-odd and parity-allowed asymmetries, analysis of potential systematic effects, and the LANSCE results. The asymmetry has an estimated size of 5 × 10 −8 and the aim of the NPDGamma collaboration is to measure it to 1 × 10 −8 . The second phase of the measurement will be performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory.
We report the first observation of the parity-violating gamma-ray asymmetry A np γ in neutronproton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A np γ isolates the ∆I = 1, 3 S1 → 3 P1 component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured A np γ = (−3.0 ± 1.4(stat.) ± 0.2(sys.)) × 10 −8 , which implies a DDH weak πN N coupling of h 1 π = (2.6 ± 1.2(stat.) ± 0.2(sys.)) × 10 −7 and a pionless EFT constant of C 3 S 1 → 3 P 1 /C0 = (−7.4 ± 3.5(stat.) ± 0.5(sys.)) × 10 −11 MeV −1 . We describe the experiment, data analysis, systematic uncertainties, and implications of the result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.