We present a new measurement of the positive muon magnetic anomaly, a µ ≡ (gµ − 2)/2, from the Fermilab Muon g −2 Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω′ p , and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/ω ′ p , together with precisely determined external parameters, we determine a µ = 116 592 057(25) × 10 −11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a µ (FNAL) = 116 592 055(24) × 10 −11 (0.20 ppm). The new experimental world average is aµ(Exp) = 116 592 059(22) × 10 −11 (0.19 ppm), which represents a factor of two improvement in precision.
Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a “corona” around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 Å. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.
We report the first observation of the parity-violating gamma-ray asymmetry A np γ in neutronproton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A np γ isolates the ∆I = 1, 3 S1 → 3 P1 component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured A np γ = (−3.0 ± 1.4(stat.) ± 0.2(sys.)) × 10 −8 , which implies a DDH weak πN N coupling of h 1 π = (2.6 ± 1.2(stat.) ± 0.2(sys.)) × 10 −7 and a pionless EFT constant of C 3 S 1 → 3 P 1 /C0 = (−7.4 ± 3.5(stat.) ± 0.5(sys.)) × 10 −11 MeV −1 . We describe the experiment, data analysis, systematic uncertainties, and implications of the result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.