PurposeBitcoin has indeed been universally acknowledged as an investment asset in recent decades, after the boom-and-bust of cryptocurrency values. Because of its extreme volatility, it requires accurate forecasts to build economic decisions. Although prior research has utilized machine learning to improve Bitcoin price prediction accuracy, few have looked into the plausibility of using multiple modeling approaches on datasets containing varying data types and volumetric attributes. Thus, this paper aims to propose a bitcoin price prediction model.Design/methodology/approachIn this research work, a bitcoin price prediction model is introduced by following three major phases: Data collection, feature extraction and price prediction. Initially, the collected Bitcoin time-series data will be preprocessed and the original features will be extracted. To make this work good-fit with a high level of accuracy, we have been extracting the second order technical indicator based features like average true range (ATR), modified-exponential moving average (M-EMA), relative strength index and rate of change and proposed decomposed inter-day difference. Subsequently, these extracted features along with the original features will be subjected to prediction phase, where the prediction of bitcoin price value is attained precisely from the constructed two-level ensemble classifier. The two-level ensemble classifier will be the amalgamation of two fabulous classifiers: optimized convolutional neural network (CNN) and bidirectional long/short-term memory (BiLSTM). To cope up with the volatility characteristics of bitcoin prices, it is planned to fine-tune the weight parameter of CNN by a new hybrid optimization model. The proposed hybrid optimization model referred as black widow updated rain optimization (BWURO) model will be conceptual blended of rain optimization algorithm and black widow optimization algorithm.FindingsThe proposed work is compared over the existing models in terms of convergence, MAE, MAPE, MARE, MSE, MSPE, MRSE, Root Mean Square Error (RMSE), RMSPE and RMSRE, respectively. These evaluations have been conducted for both algorithmic performance as well as classifier performance. At LP = 50, the MAE of the proposed work is 0.023372, which is 59.8%, 72.2%, 62.14% and 64.08% better than BWURO + Bi-LSTM, CNN + BWURO, NN + BWURO and SVM + BWURO, respectively.Originality/valueIn this research work, a new modified EMA feature is extracted, which makes the bitcoin price prediction more efficient. In this research work, a two-level ensemble classifier is constructed in the price prediction phase by blending the Bi-LSTM and optimized CNN, respectively. To deal with the volatility of bitcoin values, a novel hybrid optimization model is used to fine-tune the weight parameter of CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.