One method used to examine the relationship between behavioral strategies and anatomical adaptation is to study the results of mechanical stress associated with a given behavior and compare this with skeletal adaptations to other behaviors. This comparative approach is appropriate for highlighting combinations of features that are specializations to specific types of behavior. The purpose of this paper is to compare femoral mechanics in Galago senegalensis with previously collected data for macaques and humans as a basis for discussing structural adaptations in the primate hindlimb to leaping. The stiffness and load carrying capabilities of the femoral diaphyses of 27 G. senegalensis were analyzed using the SCADS computer program. The data suggest that the galago femur is well adapted to sustain large sagittal plane compressive loads rather than large bending loads. The straightness of the femoral shaft and large midshaft area moments of inertia prevent buckling from these large compressive loads. Calculations indicate that the ratio of critical buckling load to body weight in galago is 31 times that in macaques and 55 times that in humans. The femur of this saltatory primate is morphologically adapted to resist buckling when subjected to large compressive loads, while those of macaques and humans are better adapted to resist bending moments caused by ground reaction forces acting on the extended limb. The differences between galago on the one hand and macaques and humans on the other suggest that relatively smaller moments about the hip and relatively larger moments about the knee accompany more quadrupedal and bipedal walking, while habitual leaping is associated with relatively larger moments about the hip. These data reinforce the apparent similarity of the mechanical effects of quadrupedal and bipedal locomotion on the femur and dissimilarity with femoral mechanics in habitually saltatory primates.
Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.