FT-Raman spectroscopy was employed to study normal human colorectal tissues in vitro with the aim of evaluating the spectral differences of the complex colon mucous in order to establish a characteristic Raman spectrum. The samples were collected from 39 patients, providing 144 spectra for the statistical analysis. The results enable one to establish three well-defined spectroscopic groups of non-altered colorectal tissues that were consistently checked by statistical (clustering) and biological (histopathology) analyses: group 1 is represented by samples with the presence of epithelial layer, connective tissue papillae, and smooth muscle tissue; group 2 comprises tissues with epithelial layer and connective tissue papillae; group 3 presented mostly fatty and slack conjunctive tissue. The study reveals the existence of an intrinsic spectral variability for each patient that must be considered when sampling tissues fragments to build a spectral database. This is the first step for future studies and applications of Raman spectroscopy to optical biopsy and diagnosis of colorectal cancer.
Herein, polylactic acid containing two different concentrations of superhydrophilic multiwalled carbon nanotube graphene oxide hybrid (MWCNT‐GO, 0.5 wt% and 5 wt%) is rotary‐jet spun. The morphological, thermal, and surface wettability properties are then evaluated. Biological properties, including cytotoxicity, fibroblast cell adhesion, and the overall bioactive effect, are also investigated. It is demonstrated that the thermal behavior is affected by the presence of MWCNT‐GO, as well as the crystallinity. The addition of MWCNT‐GO, even in small amounts, reduces the wettability property of the fibers, making them more hydrophobic. However, biological tests with these fibers show no cytotoxic effect in all fiber sample groups, even when MWCNT‐GO concentration is increased. Therefore, nano‐structured, porous, and biocompatible polymeric scaffolds are obtained, with a high surface area and with notable potential for tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.