Background Brazil ranks second worldwide in total number of COVID-19 cases and deaths. Understanding the possible socioeconomic and ethnic health inequities is particularly important given the diverse population and fragile political and economic situation. We aimed to characterise the COVID-19 pandemic in Brazil and assess variations in mortality according to region, ethnicity, comorbidities, and symptoms.Methods We conducted a cross-sectional observational study of COVID-19 hospital mortality using data from the SIVEP-Gripe (Sistema de Informação de Vigilância Epidemiológica da Gripe) dataset to characterise the COVID-19 pandemic in Brazil. In the study, we included hospitalised patients who had a positive RT-PCR test for severe acute respiratory syndrome coronavirus 2 and who had ethnicity information in the dataset. Ethnicity of participants was classified according to the five categories used by the Brazilian Institute of Geography and Statistics: Branco (White), Preto (Black), Amarelo (East Asian), Indígeno (Indigenous), or Pardo (mixed ethnicity). We assessed regional variations in patients with COVID-19 admitted to hospital by state and by two socioeconomically grouped regions (north and central-south). We used mixed-effects Cox regression survival analysis to estimate the effects of ethnicity and comorbidity at an individual level in the context of regional variation.Findings Of 99 557 patients in the SIVEP-Gripe dataset, we included 11 321 patients in our study. 9278 (82•0%) of these patients were from the central-south region, and 2043 (18•0%) were from the north region. Compared with White Brazilians, Pardo and Black Brazilians with COVID-19 who were admitted to hospital had significantly higher risk of mortality (hazard ratio [HR] 1•45, 95% CI 1•33-1•58 for Pardo Brazilians; 1•32, 1•15-1•52 for Black Brazilians). Pardo ethnicity was the second most important risk factor (after age) for death. Comorbidities were more common in Brazilians admitted to hospital in the north region than in the central-south, with similar proportions between the various ethnic groups. States in the north had higher HRs compared with those of the central-south, except for Rio de Janeiro, which had a much higher HR than that of the other central-south states.Interpretation We found evidence of two distinct but associated effects: increased mortality in the north region (regional effect) and in the Pardo and Black populations (ethnicity effect). We speculate that the regional effect is driven by increasing comorbidity burden in regions with lower levels of socioeconomic development. The ethnicity effect might be related to differences in susceptibility to COVID-19 and access to health care (including intensive care) across ethnicities. Our analysis supports an urgent effort on the part of Brazilian authorities to consider how the national response to COVID-19 can better protect Pardo and Black Brazilians, as well as the population of poorer states, from their higher risk of dying of COVID-19.
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55m JST at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg 2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg 2 field-of-view and plate scale of 0.23 arcsec pixel −1 . To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∼1 deg 2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (NB, FWHM ∼ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band (BB) filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of mag AB 22 − 23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3 aperture). The miniJPAS primary catalog contains more than 64, 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≤ 0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∼ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude. For reference, the miniJPAS data and associated value added catalogs are publicly available http://archive.cefca.es/catalogues/minijpas-pdr201912.
We address the issue of the existence of inequivalent definitions of gravitational mass in R 2 -gravity. We present several definitions of gravitational mass, and discuss the formal relations between them. We then consider the concrete case of a static and spherically symmetric neutron star, and solve numerically the equations of motion for several values of the free parameter of the model. We compare the features of the massradius relations obtained for each definition of gravitational mass, and we comment on their dependence on the free parameter. We then argue that R 2 -gravity is a valuable proxy to discuss the existence of inequivalent definitions of gravitational mass in a generic modified gravity theory, and present some comments on the general case. *
In the years to come, the Javalambre-Physics of the Accelerated Universe Astrophysical Survey (J-PAS) will observe 8000 deg2 of the northern sky with 56 photometric bands. J-PAS is ideal for the detection of nebular emission objects. This paper presents a new method based on artificial neural networks (ANNs) that is aimed at measuring and detecting emission lines in galaxies up to z = 0.35. These lines are essential diagnostics for understanding the evolution of galaxies through cosmic time. We trained and tested ANNs with synthetic J-PAS photometry from CALIFA, MaNGA, and SDSS spectra. To this aim, we carried out two tasks. First, we clustered galaxies in two groups according to the values of the equivalent width (EW) of Hα, Hβ, [N II], and [O III] lines measured in the spectra. Then we trained an ANN to assign a group to each galaxy. We were able to classify them with the uncertainties typical of the photometric redshift measurable in J-PAS. Second, we utilized another ANN to determine the values of those EWs. Subsequently, we obtained the [N II]/Hα, [O III]/Hβ, and O 3N 2 ratios, recovering the BPT diagram ([O III]/Hβ versus [N II]/Hα). We studied the performance of the ANN in two training samples: one is only composed of synthetic J-PAS photo-spectra (J-spectra) from MaNGA and CALIFA (CALMa set) and the other one is composed of SDSS galaxies. We were able to fully reproduce the main sequence of star-forming galaxies from the determination of the EWs. With the CALMa training set, we reached a precision of 0.092 and 0.078 dex for the [N II]/Hα and [O III]/Hβ ratios in the SDSS testing sample. Nevertheless, we find an underestimation of those ratios at high values in galaxies hosting an active galactic nuclei. We also show the importance of the dataset used for both training and testing the model. Such ANNs are extremely useful for overcoming the limitations previously expected concerning the detection and measurements of the emission lines in such surveys as J-PAS. Furthermore, we show the capability of the method to measure a EW of 10 Å in Hα, Hβ, [N II] and [O III] lines with a signal-to-noise ratio (S/N) of 5, 1.5, 3.5, and 10, respectively, in the photometry. Finally, we compare the properties of emission lines in galaxies observed with miniJPAS and SDSS. Despite the limitation of such a comparison, we find a remarkable correlation in their EWs.
The COVID-19 pandemic continues to have a devastating impact on Brazil. Brazil’s social, health and economic crises are aggravated by strong societal inequities and persisting political disarray. This complex scenario motivates careful study of the clinical, socioeconomic, demographic and structural factors contributing to increased risk of mortality from SARS-CoV-2 in Brazil specifically. We consider the Brazilian SIVEP-Gripe catalog, a very rich respiratory infection dataset which allows us to estimate the importance of several non-laboratorial and socio-geographic factors on COVID-19 mortality. We analyze the catalog using machine learning algorithms to account for likely complex interdependence between metrics. The XGBoost algorithm achieved excellent performance, producing an AUC-ROC of 0.813 (95% CI 0.810–0.817), and outperforming logistic regression. Using our model we found that, in Brazil, socioeconomic, geographical and structural factors are more important than individual comorbidities. Particularly important factors were: The state of residence and its development index; the distance to the hospital (especially for rural and less developed areas); the level of education; hospital funding model and strain. Ethnicity is also confirmed to be more important than comorbidities but less than the aforementioned factors. In conclusion, socioeconomic and structural factors are as important as biological factors in determining the outcome of COVID-19. This has important consequences for policy making, especially on vaccination/non-pharmacological preventative measures, hospital management and healthcare network organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.