This experimental study presents an analysis of the air–water flow in rectangular free-falling jets. The measurements were obtained downstream of a 1.05 m wide sharp-crested weir. The properties of the air–water flow were registered in several cross-sections of the nappe. A conductivity phase detection probe was employed, sampling at 20 kHz. Three different specific flows were considered, with energy head over the crest of 0.080, 0.109 and 0.131 m to avoid scale effects. To analyze the flow properties, air–water parameters during the fall, such as the phase change spatial distribution, air–water phase change of frequency, Sauter mean diameter, bubble chord length, turbulent intensities and spectral analyses, were studied. The jet thickness behaviors (inner jet core and free surface) were also analyzed in the falling jet. The jet thickness related to a void fraction of 90% seems to be similar to the theoretical proposal obtained by Castillo et al. (2015), while the jet thickness related to a void fraction of 10% seems to be similar to the jet thickness due to gravitational effects. The results show relative differences in the behavior of the upper and lower sides of the nappe. The experimental data allow us to improve on and complement previous research.
Los lahares primarios originados durante erupciones de volcanes nevados, como el volcán Cotopaxi, son el resultado de la combinación de mecanismos físicos relacionados con el fenómeno eruptivo como la expulsión de ceniza, material piroclástico y flujos de lava incandescente que provocan el derretimiento súbito de una porción del glaciar. Afectan directamente asentamientos humanos e infraestructura desarrollada a lo largo de los cauces de los ríos y llanuras que corresponden a los drenajes naturales por donde transitan los lahares. El periodo de recurrencia eruptiva del volcán es relativamente amplio considerando la más reciente erupción significativa que ha sido registrada en junio de 1877. La investigación se enfoca en la modelación numérica unidimensional para flujo no permanente realizada en el programa libre HEC-RAS, considerando información geológica, glaciológica, vulcanológica y cartográfica actual, generada y recopilada en campo durante los últimos años. Estos datos han sido analizados y considerados para la definición de los parámetros iniciales que corresponden a volúmenes e hidrogramas. El modelo numérico calibrado en base al evento histórico de 1877, constituye la base para la simulación de los escenarios probables de ocurrencia. Los resultados obtenidos permiten la generación de mapas de afectación referenciales que constituyen un aporte técnico y práctico, ya que pueden ser utilizados para tomar decisiones acerca de la definición de zonas de afectación, sitios seguros, planificación territorial, planes de concientización, recuperación y mitigación ante procesos eruptivos futuros del volcán Cotopaxi que afecten de manera particular el valle de Latacunga.
A modified mechanistic model is formulated to predict the pressure drop in horizontal slug flow for two-phase flow (viscous liquid and air). The model is evaluated by using accurate PDVSA INTEVEP experimental data for liquid with viscosity of 480 cP. A comparison between the modified model and experimental data shows that the absolute average relative error in pressure drop prediction is less than 6%. Introduction Venezuela has the world largest heavy oil reserves. PDVSA has launched several projects to develop the technology for optimum exploitation and production schemes. Special attention have been focused on multiphase flow along the production system, which includes horizontal & multilateral wells, vertical wells (tubing & annular flow), pipelines and production networks. Multiphase flow is characterized for the existence of flow patterns. There are different types of them, where the most common one is called slug flow, see Fig 1. Therefore, proper production system design requires of reliable pressure drop models for slug flow. Current pressure drop models for slug flow, have been developed and validated for low viscosity oils. Fluid properties affect the slug flow characteristics as well as the behavior of the pressure losses. Available pressure drop models estimate the pressure gradient with average errors about 30% as can be seen in Fig 2. This uncertainty might affect CAPEX and OPEX up to 10%. The interest of this work is to develop a rigorous pressure drop model that can be applied for both light and heavy oils. The model should be validated initially with lab data and then with field data. Due to the lack of high quality laboratory data for pressure drop in heavy oils, PDVSA INTEVEP built a multiphase production laboratory. The experimental facility and the slug flow model will be described next. Experimental Setup Test facility description Experiments were carried out in a 2-in test loop facility at PDVSA INTEVEP. Lube oil (480 cP) and air were testing fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.