In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.
In Phalaenopsis, lowering irradiance has been used to delay flower stalk development but the accompanying biochemical changes remain poorly understood. We cultured two commercial Phalaenopsis-type orchids, Phalaenopsis cv. Sogo Yukidian V3, and Doritaneopsis cv. Walnut Valley Halo ES09 under reduced irradiance by under-bench shading (approximately 15 % of mean control irradiance) for 15 weeks in a greenhouse under the natural photoperiod. Besides delaying flower stalk development as expected, the treatment greatly decreased the activities of ribulose-1,5bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and NAD + -malic enzyme, and reduced the nocturnal malate accumulation and daytime starch deposition, the typical diurnal metabolite fluctuations of crassulacean acid metabolism (CAM) plants. As well, the content of sucrose and starch was reduced at dawn and dusk whereas the content of glucose and fructose only at dawn. The persistent decrease in the sucrose content under shading may be an inhibitory signal of flower stalk induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.