Categorized as one of the renewable energies, PhotoVoltaic system has a great potential compared to its counterparts of renewable energies. This paper deals with the design of a Photovoltaic (PV)-Battery fed Switched Reluctance Motor(SRM). The system mainly composed of a PV module, boost converter, rechargeable battery, bidirectional converter, asymmetric bridge converter, SRM and system controllers. The main problems of SRM are high torque ripple, acoustic noise and vibration problems. In order to reduce these problems, a new direct torque control of 3.5 kW 8/6 SRM is proposed, which is simple and can be implemented with low cost processor. It can be seen from the simulation results that this scheme has well regulated the torque output of the motor with in hysteresis band. The proposed system assures its suitability for solar applications like solar vehicles, solar water pumping system and floor mills in hilly and isolated areas.
Power quality (PQ) is gaining a great deal of importance as more sensitive loads are introduced into the utility grid. The degradation of product quality, damage of equipment and temporary shutdowns are the general issues associated with PQ problems in industries. Any mal-operation or damage of the industrial sensitive loads results in monetary losses disproportionately higher than the severity of the PQ issues. The evolution of power electronics technology replaced the traditional power quality mitigation methods with the introduction of Custom Power System devices (CUPS). The major power electronic controller based CUPS are DSTATCOM, DVR and UPQC. DVR is a pertinent solution for the economic losses caused by the PQ issues in the industries. Among the CUPS, DVR is the most cost-effective one. In the published literature, only a few papers correspond to the review of DVR technology. In this paper, a systematic review of published literature is conducted and a description is given on the design, standards and challenges in the DVR technology. A detailed survey is conducted on the published
Summary
This paper presents T‐type multilevel inverter topology‐based dynamic voltage restorer (DVR) with reduced switch count. In medium voltage and high‐power applications, two‐level voltage source inverters are insufficient because of more voltage stress on switches, large dv/dt, size, and cost of the filter. To overcome these problems, multilevel inverter‐based DVR is suitable, which can be directly connected to the medium voltage distribution system without injection transformer. In addition, the control of the DVR is implemented by abc to dq controller. The voltage compensation capability of the proposed DVR is enhanced by employing the in‐phase compensation technique with reduced carrier pulse width modulation scheme, and also the total harmonic distortion(THD) in the load voltage is reduced. The design and analysis of the proposed system are discussed, and its performance is validated in MATLAB/Simulink and in the OPAL‐RT real time processor.
A smooth torque control of switched reluctance motor (SRM) is essential to avoid speed fluctuations causing stability problems in vehicular applications. This can be accomplished by an appropriate motor design and/or use of direct control of torque in SRM. It is reported that high RMS current is required to minimise the torque ripple in the conventional direct torque and flux control (DTFC), thereby reducing the torque per ampere ratio. To overcome this issue, a new DTFC technique with improved torque per ampere ratio while minimising torque ripple in an SRM traction drive is presented. Results demonstrated that the proposed DTFC technique reduces torque ripple with enhanced torque per ampere. Finally, the performance of the proposed scheme is compared with conventional DTFC of a four-phase (8/6) SRM to show the improvement in the traction drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.