A series of 4,5-diaryl-2-(substituted thio)-1H-imidazoles has been synthesized and demonstrated to be potent inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). The design, synthesis, and structure-activity relationships for this series are reported herein. One of the compounds from this series, N'-(2,4-difluorophenyl)-N-[5-[(4,5-diaryl-1H-imidazol-2- yl)thio]pentyl]-N-heptylurea (DuP 128), was selected for development as an intestinally active ACAT inhibitor. DuP 128 is a potent ACAT inhibitor in vitro and in vivo, inhibiting ACAT in rat hepatic microsomes with an IC50 = 10 nM and possessing potent antihypercholesterolemic activity in vivo.
A novel series of 2-indolinones with in vitro anti-HIV (human immunodeficiency virus) activity is described. Two structurally related compounds, 1, 3,3-(4- N-methyl-1,2,5,6-tetrahydropyridylmethyl)-1- phenyl-2-indolinone, and 2, its 4- N-methylpiperidinylmethyl analogue (Fig. 1), formed the basis of a structure-activity study. The synthesis of approximately 50 analogues and their respective activities vs. HIV are presented. Both 1 and 2 were effective inhibitors of HIV(IIIb) in cell protection assays with IC90 values of 4.4 and 14.9μM (2.2 and 7.9μg ml−1), respectively. In the same concentration range, 1 and 2 also inhibit syncytia formation. These compounds represent a novel class of anti-HIV agents which appear to act by inhibiting virus-dependent cell fusion.
Acyl-CoA:cholesterol acyltransferase (ACAT) is the primary enzyme involved in intracellular cholesterol esterification. Arterial wall infiltration by macrophages and subsequent uncontrolled esterification of cholesterol leading to foam cell formation is believed to be an important process which leads to the development of fatty streaks. Inhibitors of the ACAT enzyme may retard this atherogenic process. We have recently discovered a series of imidazoles which are potent in vitro ACAT inhibitors in the J774 macrophage cell culture assay. This paper will describe the design, synthesis, and structure--activity relationship for this very potent series of compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.