The impact of the genotype‐specific leaf morphological and anatomical characteristics on the ability of wheat plants to preserve leaf water balance and cell membranes stability under drought stress was investigated. Seedlings of six modern semi‐dwarf (carriers of Rht, Reduced height genes) and six old tall bread wheat varieties were subjected to soil drought by withholding watering for 6 days. Morpho‐anatomical traits (leaf area, perimeter, thickness, stomata and trichome density) of daily watered (control) plants were characterized by light microscopy, scanning and image analyses. The leaf water status in both control and stressed plants was determined by measuring the relative water content (RWC). The leaf cell membranes stability in stressed plants was estimated by conductometric determination of the membranes injury index. On average, the modern semi‐dwarf varieties had less leaf area and leaf perimeter, and less dissection index, a parameter characterizing the leaf shape. Under drought stress, the modern genotypes maintained better water balance evidenced by significantly higher leaf RWC and better‐preserved the cell membranes stability supported by significantly lower Injury index. The correlations between morpho‐anatomical traits in control plants and drought tolerance‐related traits showed that the higher the leaf dissection index (i.e. more oblong leaves), the greater the water loss and the leaf membrane damages after desiccation were. The effect of shape of the evaporating surface on the water loss was modelled using wet filter paper. Similar to plant leaves, the evaporation and, respectively, water loss from paper pieces of more oblong shape (i.e. higher dissection index) was more intensive. The elucidation of the impact of the leaf shape on transpiration might contribute to better understanding of the mechanisms used by plants to maintain water reserves during drought stress and could be a basis for developing of simple and fast screening methods aiding the selection of drought tolerant genotypes.
Summary• Here, using light microscopy, we studied the cellular basis of growth of Arabidopsis cotyledons during postembryonic development.• Analysis of serial paradermal sections of developing cotyledons revealed that early growth involved cell enlargement and some cell division. The daughter cells remained tightly packed in growing clusters, which enabled us to monitor both divisions and cell enlargement.• By contrast to other epigeal cotyledons, cells of all mesophyll layers could enter division. The cells in the cotyledon margins displayed a higher proliferative activity; however, the orientation of the division plane did not permit cells at the margins to give rise to tissue internally, nor to generate new cell layers. Exogenous cytokinin stimulated both cell expansion and cell division in attached dark-grown cotyledons. Light stimulated cell growth. Higher-levels of endogenous cytokinins in the amp1 mutant were confirmed to enhance the light-stimulated process of cell enlargement in cotyledons of dark-grown seedlings.• This work demonstrates an approach to use Arabidopsis cotyledons as an experimental system and provides a framework for molecular-genetic analysis of cellular dynamics during the growth of this organ.
A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site.
Serverless computing has seen rapid adoption due to its high scalability and flexible, pay-as-you-go billing model. In serverless, developers structure their services as a collection of functions, sporadically invoked by various events like clicks. High inter-arrival time variability of function invocations motivates the providers to start new function instances upon each invocation, leading to significant cold-start delays that degrade user experience. To reduce cold-start latency, the industry has turned to snapshotting, whereby an image of a fully-booted function is stored on disk, enabling a faster invocation compared to booting a function from scratch.This work introduces vHive, an open-source framework for serverless experimentation with the goal of enabling researchers to study and innovate across the entire serverless stack. Using vHive, we characterize a state-of-the-art snapshot-based serverless infrastructure, based on industry-leading Containerd orchestration framework and Firecracker hypervisor technologies. We find that the execution time of a function started from a snapshot is 95% higher, on average, than when the same function is memoryresident. We show that the high latency is attributable to frequent page faults as the function's state is brought from disk into guest memory one page at a time. Our analysis further reveals that functions access the same stable working set of pages across different invocations of the same function. By leveraging this insight, we build REAP, a light-weight software mechanism for serverless hosts that records functions' stable working set of guest memory pages and proactively prefetches it from disk into memory. Compared to baseline snapshotting, REAP slashes the cold-start delays by 3.7×, on average. CCS CONCEPTS• Computer systems organization → Cloud computing; • Information systems → Computing platforms; Data centers; • Software and its engineering → n-tier architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.