This research study analysed the effect of adding fine—fMRA (0.25% and 50%)—and coarse—cMRA (0%, 25% and 50%)—mixed recycled aggregate both individually and simultaneously in the development of sustainable recycled concretes that require a lower consumption of natural resources. For this purpose, we first conducted a physical and mechanical characterisation of the new recycled raw materials and then analysed the effect of its addition on fresh and hardened new concretes. The results highlight that the addition of fMRA and/or cMRA does not cause a loss of workability in the new concrete but does increase the amount of entrained air. Regarding compressive strength, we observed that fMRA and/or cMRA cause a maximum increase of +12.4% compared with conventional concrete. Tensile strength increases with the addition of fMRA (between 8.7% and 5.5%) and decreases with the use of either cMRA or fMRA + cMRA (between 4.6% and 7%). The addition of fMRA mitigates the adverse effect that using cMRA has on tensile strength. Regarding watertightness, all designed concretes have a structure that is impermeable to water. Lastly, the results show the feasibility of using these concretes to design elements with a characteristic strength of 25 MPa and that the optimal percentage of fMRA replacement is 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.