Some features of a boundless network of hexagons embedded on the surface of a torus are discussed. A systematic coding and classification scheme is suggested whereby any toroidal polyhex may be described by a unique string of three integers. This can be used to compile an adjacency matrix and to evaluate the eigenspectrum by simple methods which are valid for all such structures with fewer than 7200 vertices (3600 hexagons). A general method, valid for all systems, is sketched out. Some eigenvalue regularities are pointed out, including cases of subspectrality. The enumeration of spanning trees and of Kekule structures is discussed, and a Kekule count published by the Galveston Group is confirmed.
Abstract:The duality alluded to in the title is that between the faces and vertices of a graph embedded on a surface. Its recognition in the context of the five Platonic solids is classic. Algebraically, it is present in the equation for Euler's Polyhedron Theorem and in the various extensions thereof. The Cycle Theorem (CT) establishes a formula for the number of spanning trees contained in a graph embedded on a surface. It is based on the mutual incidences of its cycles (circuits which also carry a sense of direction), i.e., of sub-graphs of the Cn type, endorsed with a sense. These appear (though not exclusively) as the boundaries of faces, so that, so to speak, the Cycle Theorem establishes a result which is essentially about vertices via relations between faces. Among several possible duals of the Cycle Theorem there might thus be one that establishes a relation which is essentially about faces via relations between vertices. In order to formulate one, we define, for an embedded graph, a feature concerning faces that is dual to a spanning tree. We call it a ladder. A formula is presented for the number of ladders contained in a graph which, in some cases, introduces the concept of 'artificial vertices'. It is based on the mutual incidences of its vertices. Its form is clearly analogous, or 'dual', to the Cycle Theorem formula for spanning trees, previously proposed (in this journal -2004) by three of the present authors, together with Klein and Sachs. A new index is proposed, which involves ladders. We call it the Patency Index of a graph; its numerical value may be related to molecular complexity. It is effectively the dual of, and is entirely analogous to, the Spanning-Tree Density Index which was earlier (2003) proposed, defined and applied to molecular graphs by one of the present authors and Trinajstić.
What Kirchhoff actually did concerning spanning trees in the course of his classic paper in the 1847 Annalen der Physik und Chemie has, to some extent, long been shrouded in myth in the literature of Graph Theory and Mathematical Chemistry. In this review, Kirchhoff's manipulation of the equations that arise from application of his two celebrated Laws of electrical circuits -formulated in the middle of the 19 th century -is related to 20 th -and 21 st -century work on the enumeration of spanning trees. It is shown that matrices encountered in an analysis of what Kirchhoff really did include (a) the Kirchhoff (Laplacian, Admittance) matrix, K, that features in the well-known Matrix Tree Theorem, (b) the matrix G encountered in the theorem of Gutman, Mallion & Essam (1983), applicable only to planar graphs, and (c) the analogous matrix M that arises in the Cycle Theorem (Kirby et al. 2004), a theorem that applies to graphs of any genus. It is concluded that Kirchhoff himself was not interested in counting spanning trees, and, accordingly, he did not explicitly do so. Nevertheless, it is shown how the modulus of the determinant of a certain matrix (here denoted by the label C') -associated with the linear equations arising from application of Kirchhoff's two Laws -is numerically equal to the number of spanning trees in the graph representing the connectivity of the electrical network being studied. Kirchhoff did, however, invoke the concept of spanning trees, introducing them in a complementary fashion by referring to the chords that must be removed from the original graph in order to form such trees. It is further emphasised that, in choosing the cycles in the network being studied, around which to apply his circuit Law, Kirchhoff explicitly selected what would now be called a 'Fundamental System of Cycles'.
The theorem of Gutman et al. (1983) is applied to calculate the number of spanning trees in the carbon-carbon connectivity-network of the recently diagnosed C,,cluster buckminsterfullerene. This "complexity" turns out to be approximately 3.75 x lozo and it is found necessary to invoke the device of modulo arithmetic and the "Chinese Remainder Theorem" in order to evaluate it precisely on a small computer. The exact spanningtree count for buckminsterfullerene is 375 291 866 372 898 816 000, or, ZZ5 X 34 X 53 X 115 X 19'. A "ringcurrent" calculation by the method of McWeeny may be based on any desired one of this vast number of spanning trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.