Paratuberculosis (Johne's disease) is a chronic, wasting, widespread mycobacteriosis of ruminants. It involves extensive mycobacterial shedding, which accounts for the high contagiousness, and ends with a fatal enteritis. Decreases in weight, milk production, and fertility produce severe economic loss. The DNA of the etiological agent (Mycobacterium paratuberculosis) has a base composition (66 to 67% G+C) within the range of that of mycobacteria (62 to 70% G+C), a size (4.4 x 10(6) to 4.7 x 10(6) bp) larger than that of most pathogenic mycobacteria (2.0 x 10(6) to 4.2 x 10(6) bp), and a high relatedness (> 90%) to Mycobacterium avium DNA. However, the DNAs of the two organisms can be distinguished by restriction fragment length polymorphism analysis. M. paratuberculosis genes coding for a transposase, a cell wall-associated protein (P34), and two heat shock proteins have been cloned and sequenced. Nucleic acid probes (two of which are species specific) are used, after PCR amplification, for M. paratuberculosis identification in stools and milk. As in leprosy, with disease progression, cellular immune reactions decrease and humoral immune reactions increase. Cutaneous testing with sensitins, lymphocyte proliferation assays, and cytokine tests are used to monitor cellular immune reactions in paratuberculosis, but these tests lack specificity. Complement fixation, immunodiffusion, and enzymometric tests based on antibodies to M. paratuberculosis extracts, to mycobacterial antigen complex A36, to glycolipids, and to proteins help identify affected cattle but are not species specific. The carboxyl-terminal portion of the 34-kDa cell wall-associated A36 protein (P34) carries species-specific B-cell epitopes and is the basis for an enzyme-linked immunosorbent assay. Diagnostic tests for paratuberculosis are also used in Crohn's disease, a chronic human ileitis mimicking Johne's disease, in which isolates identified as M. paratuberculosis have been found.