Objective: The objective of the present study is to determine the possible phytoconstituents identified by gas chromatography and mass spectrometry (GC-MS) analysis of an ethanolic leaves extract of Elettaria cardamomum L. Maton.Methods: The extraction of E. cardamomum was done by cold solvent extraction system at room temperature. GC-MS analysis of lyophilized ethanolic leaves extract of plant samples was carried out by GC-MS-GC Clarus 500 Perkin Elmer. Results: In E. cardamomum, 21 phytochemicals were identified among which retinal, 9-cis-showed the highest area (44.86%) and benzeneethanamine, α-methyl- showed the lowest area (0.12%). The major compounds identified were retinal, 9-cis-, 1-heptatriacotanol, phytol, n-hexadecanoic acid, naphthalene,decahydro-1,1,4atrimethyl-6-methylene-5-(3-methyl-2-4-pentadienyl)-[4aS-(4aα,5α,8aα)]-, β-pinene, 2H-pytan-3-ol,6- ethenyltetrahydro-2,2,6-trimethyl-and cyclopropane, trimethanol, (2-methyl-1-propanylidene).Conclusion: GC-MS analysis revealed the presence of hydrocarbon alkane, ester, terpenes, phenolic compounds, steroids, and fatty acids in E. cardamomum. These active phytoconstituents contribute to the medicinal efficacy of the plant, and the plant can be used for the sourcing of these compounds.
Objective: The objective of the present study is to determine the possible phytoconstituents identified by gas chromatography and mass spectrometry (GC-MS) analysis of an ethanolic leaves extract of Elettaria cardamomum L. Maton.Methods: The extraction of E. cardamomum was done by cold solvent extraction system at room temperature. GC-MS analysis of lyophilized ethanolic leaves extract of plant samples was carried out by GC-MS-GC Clarus 500 Perkin Elmer. Results: In E. cardamomum, 21 phytochemicals were identified among which retinal, 9-cis-showed the highest area (44.86%) and benzeneethanamine, α-methyl- showed the lowest area (0.12%). The major compounds identified were retinal, 9-cis-, 1-heptatriacotanol, phytol, n-hexadecanoic acid, naphthalene,decahydro-1,1,4atrimethyl-6-methylene-5-(3-methyl-2-4-pentadienyl)-[4aS-(4aα,5α,8aα)]-, β-pinene, 2H-pytan-3-ol,6- ethenyltetrahydro-2,2,6-trimethyl-and cyclopropane, trimethanol, (2-methyl-1-propanylidene).Conclusion: GC-MS analysis revealed the presence of hydrocarbon alkane, ester, terpenes, phenolic compounds, steroids, and fatty acids in E. cardamomum. These active phytoconstituents contribute to the medicinal efficacy of the plant, and the plant can be used for the sourcing of these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.