For most laser-driven ion acceleration applications, a well-characterized intense ion beam with a low divergence and a controllable energy spectrum produced at a high repetition rate is needed. Gas-jet targets have given promising results in simulations, and they have several technical advantages for high-repetition-rate lasers. In this work, we report on proton acceleration to energies up to 6 MeV using a supersonic H2 gas-jet target at the LULI PICO2000 laser facility. The experimental results are compared with the plasma hydrodynamics and the particle-in-cell simulations to identify the acceleration mechanisms at play.
Computational fluid dynamics simulations are performed to design gas nozzles, associated with a 1000 bars backing pressure system, capable of generating supersonic gas jet targets with densities close to the critical density for 1053 nm laser radiation (1021 cm−3). Such targets should be suitable for laser-driven ion acceleration at a high repetition rate. The simulation results are compared to the density profiles measured by interferometry, and characterization of the gas jet dynamics is performed using strioscopy. Proton beams with maximum energies up to 2 MeV have been produced from diatomic hydrogen gas jet targets in a first experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.