With the increasing knowledge of the pathogenesis of atherosclerosis, it appears that in the future the prevention of cardiovascular disease will involve not only risk factor correction, but also direct pharmacological control of processes occurring in the arterial wall. Among these, a pivotal role is played by smooth muscle cell (SMC) migration and proliferation, which, together with lipid deposition, are prominent features of atherogenesis and restenosis after angioplasty. Mevalonate and other intermediates of cholesterol synthesis (isoprenoids) are essential for cell growth, hence drugs affecting this metabolic pathway are potential antiatherosclerotic agents. Recently, we provided in vitro and in vivo evidence that fluvastatin, simvastatin and lovastatin, but not pravastatin, decrease SMC migration and proliferation dose dependently, independently of their hypocholesterolemic properties. The in vitro inhibition of cell migration and proliferation induced by simvastatin and fluvastatin (70-90% decrease) was prevented completely by the addition of mevalonate, and partially prevented by farnesol and geranylgeraniol (80%), confirming the specific role of isoprenoid metabolites in regulating these cellular events, probably through prenylated protein(s). The in vivo antiproliferative activity of fluvastatin on neointimal hyperplasia in normocholesterolemic rabbits was also prevented fully by the local delivery of mevalonate, by means of an Alzet pump. Fluvastatin and simvastatin also inhibited cholesterol esterification and deposition induced by acetylated LDL in cultured macrophages. This effect was fully prevented by the addition of mevalonate or geranylgeraniol. Taken together, these results suggest that, beyond their effects on plasma lip-ids, HMG-CoA reductase inhibitors exert a direct antiatherosclerotic effect on the arterial wall, probably through local inhibition of isoprenoid biosynthesis.
The in vitro effects were investigated of the new dihydropyridine calcium antagonist (CA) lercanidipine and its enantiomers on arterial myocyte (smooth muscle cell; SMC) migration and proliferation as related to L-type calcium channel inhibition. Lercanidipine and its enantiomers inhibited the replication and migration of arterial myocytes in concentration ranging from 10 to 50 microM. The antiproliferative effect of lercanidipine, evaluated as cell number, was dose dependent, with a potency similar to that of lacidipine and nifedipine, and was unrelated to the stereoselectivity of enantiomers to bind L-type calcium channels. The cell doubling time increased with drug concentration < or = 122 versus 38 h for controls. The cell growth inhibition induced by lercanidipine and its enantiomers was reversible. Lercanidipine dose dependently decreased [3H]thymidine incorporation into DNA; the (R)-enantiomer, displaying the lowest CA activity, was the most potent in this respect. The tested compounds were able to inhibit fibrinogen-induced myocyte migration in a dose-dependent manner, with the (R)-enantiomer showing the more pronounced effect. To directly rule out the role of calcium channels in the antiatherosclerotic properties of lercanidipine, we examined the effect of the compounds on serum-stimulated calcium influx in SMC. Fluorimetry of Fluo 3 was used to measure changes in free cytosolic Ca2+ concentration ([Ca2+]i) in SMC after long-term preincubation (24 h) with the tested CA. Lercanidipine and its enantiomers (25 microM) decreased the serum-induced elevation of [Ca2+]i in SMC with the (S)-enantiomer (69% inhibition) 2.4-fold more active than the counterpart and the racemate (29% inhibition). In conclusion, our in vitro results suggest that lercanidipine may directly interfere with events involved in atherogenesis. The studies performed with enantiomers of lercanidipine suggest that the observed effects are not related to the blockade of voltage-dependent Ca2+ channels and confirm at least in vitro a pharmacologic potential of the compound to negatively influence the process of atherogenesis.
The major relation existing between cell growth and cholesterol homeostasis prompted us to investigate the effect of 26-aminocholesterol (26-NH2), 27-hydroxycholesterol (27-OH), and 25-hydroxycholesterol (25-OH) on these cellular events. To test this relation, we incubated human and rat arterial myocytes with the sterols for 72 hours. All the tested compounds (0.5 to 7.5 mumol/L) inhibited rat and human myocyte proliferation and cholesterol biosynthesis in a dose-dependent manner. 26-NH2 was more potent than oxysterols in inhibiting human myocyte proliferation but equieffective in rat cells; 27-OH and 25-OH displayed similar activity in both cell lines. Inhibition of nuclear incorporation of thymidine in rat myocytes is consistent with decreased cell count. The antiproliferative effect of the tested sterols was reversible. The high inhibition (80%) of cholesterol biosynthesis necessary to induce a decrease in myocyte proliferation suggests a causal relation between the cholesterol synthetic pathway and these cellular processes. In addition, all the tested sterols were able to inhibit hydroxymethyl glutaryl-coenzyme A reductase activity in intact myocytes but not in cell-free extracts. The finding that 26-NH2 but not 27-OH or 25-OH does not suppress LDL receptor activity in either human or rat myocytes supports the achievement of selectivity over the coordinately regulated LDL receptor gene. The ability of 26-NH2 to interfere with myocyte proliferation and cholesterol synthesis without affecting the LDL receptor pathway confers at least in vitro a pharmacological interest on the compound in the process of atherogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.