Values of the aspect ratio for trenches etched into HgCdTe by an electron cyclotron resonance (ECR) plasma containing hydrogen and argon are limited by the phenomenon of etch lag. Modeling this plasma as an ion assisted, reactiveetching process leads to a set of conditions that greatly reduces etch lag. Use of these new process conditions produces trenches with aspect ratios greater than 3, widths less than 3 m, and depths in excess of 15 m.
A simple method based on inductively coupled plasma mass spectrometry (ICP-MS) was developed to identify exposure to depleted uranium by measuring the isotopic composition of uranium in urine. Exposure to depleted uranium results in a decreased percentage of 235U in urine samples causing measurements to vary between natural uranium's 0.72% and depleted uranium's 0.2%. Urine samples from a non-depleted uranium exposed group and a suspected depleted uranium exposed group were processed and analyzed by ICP-MS to determine whether depleted uranium was present in the urine. Sample preparation involved dry-ashing the urine at 450 degrees C followed by wet-ashing with a series of additions of concentrated nitric acid and 30% hydrogen peroxide. The ash from the urine was dissolved in 1 M nitric acid, and the intensity of 235U and 238U ions were measured by ICP-MS. After the samples were ashed, the ICP-MS measurements required less than 5 min. The 235U percentage in individuals from the depleted uranium exposed group with urine uranium concentrations greater than 150 ng L(-1) was between 0.20%-0.33%, correctly identifying depleted uranium exposure. Samples from the non-depleted uranium exposed individuals had urine uranium concentration less than 50 ng L(-1) and 235U percentages consistent with natural uranium (0.7%-1.0%). A minimum concentration of 14 ng L(-1) uranium was required to obtain sufficient 235U to allow calculating a valid isotopic ratio. Therefore, the percent 235U in urine samples measured by this method can be used to identify low-level exposure to depleted uranium.
The erosion rate of resist during electron cyclotron resonance (ECR) plasma etching of II-VI semiconductors is the limiting factor for the selectivity (values range from 5:1 to 10:1). We have measured the erosion rates of AZ 1529, a commercially available diazonaphthoquinone (DNQ) novolak photoresist, under plasma conditions optimized for etching of the underlying semiconductor and have developed an in-situ technique to "harden" the resist by exposing it to an argon-only ECR plasma. A subsequent standard plasma process can then be used to etch the II-VI material, thereby achieving selectivity values greater than 50:1.
Three techniques for determining the composition (x CdTe) of Hg, _,Cd,Te are reviewed. These three techniques are infrared transmission (often called FTIR, for Fourier transform infrared) spectroscopy, energy dispersive x-ray analysis (EDX) and optical reflectance (OR). A brief summaryofseveral methodsfordetermining composition in Hg,-xCdxTe is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.