Host plant cues are known to shape insect-host plant association in many insect groups. More pronounced associations are generally manifested in specialist herbivores, but little is known in generalist herbivores. We used a polyphagous native beetle from New Zealand, bronze beetle, Eucolaspis sp. 'Hawkes Bay' (Chrysomelidae: Eumolpinae) to explore the role of olfaction in locating host plants and local adaptation. We also tested the role of other cues in the degree of acceptance or rejection of hosts. Adult Eucolaspis beetles were attracted to fresh leaf volatiles from apple and blackberry (Rosaceae). Male and female beetles responded similarly to olfactory cues of host plants. An indication of evolutionary affiliation was observed in olfactory preferences of geographically isolated conspecific populations. We found that geographically isolated populations of the beetles differ in their olfactory responses and exhibit some degree of local adaptation. However, irrespective of geographical and ecological associations, blackberry was preferred over apple as a feeding plant, and another novel plant, bush lawyer (Rubus australis), was readily accepted by 53.25% of the tested beetles. We show that plant volatiles play an important role in host location by Eucolaspis, but the acceptance or rejection of a particular host could also involve visual and contact cues.
Zeugodacus cucumis and Bactrocera jarvisi are pests of fruit and vegetable crops and cause damage to horticulture industries. Immature stages of these two fruit fly species have been intercepted in New Zealand a number of times. Identification to species was not possible using morphological characters; thus, it is important to develop an assay for their species‐level identification. Here, the real‐time PCR assays for rapid identification of Z. cucumis and B. jarvisi were developed and validated. The PCR protocols demonstrated their specificity by amplifying the two target species successfully, with no cross‐reactions observed in the tested tephritid species. The in silico test of the primer and probe binding sites of the two assays also demonstrated the assays’ specificity by no mismatches present in the binding regions of the target species, but 1–4 mismatches in the binding regions of the non‐target fruit fly species. The thresholds of detection for the two assays are as low as 10 copies/µl of the target DNA, indicating that the assays have a very high sensitivity. The application of the real‐time PCR assays has greatly assisted in routine pest identifications at the New Zealand border and surveillance programme. Therefore, the assays have the potential to be used by diagnostic agencies and research organizations worldwide.
Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomelidae: Eumolpinae) with poorly described species and a complex taxonomy. Many economically important fruit crops are severely damaged by these beetles. Uncertain species taxonomy of Eucolaspis is leaving any biological research, as well as pest management, tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phylogenetic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from several locations across their distribution range, as well as identified voucher specimens from major museum collections were examined to test the current classification. We also considered phylogenetic relationships among New Zealand and global Eumolpinae (Coleoptera: Chyrosomelidae). We demonstrate that most of the morphological information used previously to define New Zealand Eucolaspis species is insufficient. At the same time, we show that a combination of morphological and genetic evidence supports the existence of just 3 mainland Eucolaspis lineages (putative species), and not 5 or 15, as previously reported. In addition, there may be another closely related lineage (putative species) on an offshore location (Three Kings Islands, NZ). The cladistic structure among the lineages, conferred through mitochondrial DNA data, was well supported by differences in male genitalia. We found that only a single species (lineage) infests fruit orchards in Hawke’s Bay region of New Zealand. Species-host plant associations vary among different regions.
The population structure and dynamics of bronze beetle Eucolaspis spp and other soil macroinvertebrates were studied in eight organic apple orchards in Hawkes Bay during spring/summer 200708 Orchards with high bronze beetle population densities also had higher abundance of all types of soil macroinvertebrates than orchards with low bronze beetle populations Surfacedwelling generalist predators were more numerous (on average 536 versus 405 predators per trap) in orchards with low bronze beetle density than in orchards with high beetle density This result was mainly due to spider numbers in pitfall traps which were highest during January It may be that within orchards where surface dwelling spiders are most abundant these spiders may be predating upon newly emergent adult bronze beetles as they move from the soil to the apple foliage
Eucolaspis sp. "Hawke's Bay" (Chrysomelidae: Eumolpinae) is a pest that inflicts huge economic loss in many organic apple (Malus domestica Borkh.) orchards in New Zealand. The timing of control methods for this pest has been shown to be crucial for success. To aid in planning control programs, we studied threshold temperature and degree-days required for the development of Eucolaspis sp. "Hawke's Bay" pupae and modeled adult emergence in the field. Pupal development was observed at three constant temperatures. Pupae required 237.0 +/- 21.67 degree-days above lower threshold temperature of 4.7 degrees C +/- 0.89 degrees C to develop into adults. The emergence of adults was modeled with these thermal values and the model was tested for accuracy with field data. The model performed well with a precision of +/- 4 d. The proposed phenology model has wide applicability in monitoring and planning pest control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.