A case of schistosomiasis is described in a native of Rio de Janeiro, where, apart from infection of the intestines, a meningitic granulomatous reaction was provoked around eggs. Intracerebral and subsequently subarachnoid hemorrhage occurred. The mode of infection is disucssed.
Background
Leprosy is caused by multiple interactions between Mycobacterium leprae (M. leprae) and the host’s peripheral nerve cells. M. leprae primarily invades Schwann cells, causing nerve damage and consequent development of disabilities. Despite its long history, the pathophysiological mechanisms of nerve damage in the lepromatous pole of leprosy remain poorly understood. This study used the findings of 18F-FDG PET/CT on the peripheral nerves of eight lepromatous patients to evaluate the degree of glucose uptake by peripheral nerves and compared them with clinical, electrophysiological, and histopathological evaluations.
Methods
Eight patients with lepromatous leprosy were included in this study. Six patients were evaluated up to three months after leprosy diagnosis using neurological examination, nerve conduction study, 18F-FDG PET/CT, and nerve biopsy. Two others were evaluated during an episode of acute neuritis, with clinical, neurophysiological, and PET-CT examinations to compare the images with the first six.
Results
Initially, six patients already had signs of peripheral nerve injury, regardless of symptoms; however, they did not present with signs of neuritis, and there was little or no uptake of 18F-FDG in the clinically and electrophysiologically affected nerves. Two patients with signs of acute neuritis had 18F-FDG uptake in the affected nerves.
Conclusions
18F-FDG uptake correlates with clinical neuritis in lepromatous leprosy patients but not in silent neuritis patients. 18F-FDG PET-CT could be a useful tool to confirm neuritis, especially in cases that are difficult to diagnose, such as for the differential diagnosis between a new episode of neuritis and chronic neuropathy.
The histological study of four cases and one by electron microscopy of subependyomomas allowed us to obtain morphostructural characteristics of ependymocytes and astrocytes. Comparing these findings to those of the present day literature, we propose to name these tumours ependymal astrocytomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.