Research is currently being conducted into the construction of high-temperature (>1000°C ) tubular heat exchangers that are to operate with a large pressure differential between low-pressure combustion gas and a process fluid. High operating temperatures preclude the use of metals. Therefore it is necessary to use ceramic heat transfer components and to insulate other components to counteract the direct heat. As the high-temperature ceramic heat transfer tubes exhibit a variable thermal expansion relative to the outer metallic casing and tube sheet, it is necessary for the seals to slide. This prevents excessive axial stress being set up in the ceramic tubes, thus prolonging their life.
Compressor station gas turbine engines require protection from fuel gas liquid drop-out caused by the Joule-Thomson effect when natural gas is let down from transportation line pressure to the burner supply pressure. Indeed, gas turbine manufacturers specify a minimum gas superheat, which requires fuel gas heating at pipeline temperatures experienced in Northern Europe. Conventionally, fuel gas superheating is achieved through the use of either electric or gas fired water bath heaters, which require maintenance, and an external heat source. Meanwhile, waste heat from the turbo-compressor lube oil system is released to atmosphere, typically by air-cooled heat exchangers. Hence, there is an obvious opportunity to protect the gas turbine engine, whilst reducing the amount of heat rejected to the environment. Mechanical integrity is a key operational requirement when combining fuel gas superheating with lube oil cooling in a single heat exchanger. Fuel gas at high pressure must not enter the low pressure lube oil system. High integrity Printed Circuit Heat Exchangers (PCHEs) are ideally suited to this application, as they are diffusion bonded and fully welded heat exchangers. Used extensively in offshore high pressure gas compression trains in the North Sea, PCHEs have demonstrated that they are low maintenance items that are ideal for use in remote unmanned applications, such as those required by gas compression stations. PCHEs are highly compact, reducing space and structural requirements. This allows the exchanger to be installed underneath the compressor, minimizing the visual impact of the heat exchanger. In addition, safety and pressure relief requirements are significantly reduced, a PCHEs do not have a failure mode analogous to tube rupture in shell and tube heat exchangers. National Grid Transco have realized the opportunities of PCHEs and operated them successfully over many years in many of their compression stations throughout the United Kingdom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.