Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.
Odontoblasts, with their strategic arrangement along the outermost compartment of the dentin-pulp complex, have been suggested to have sensory function. In addition to their primary role in dentin formation, growing evidence shows that odontoblasts are capable of sensing mechanical stimulation. Previously, we found that most odontoblasts express TRPM7, the nonselective mechanosensitive ion channel reported to be critical in Mg homeostasis and dentin mineralization. In line with this finding, we sought to elucidate the functional expression of TRPM7 in odontoblasts by pharmacological approaches and mechanical stimulation. Naltriben, a TRPM7-specific agonist, induced calcium transient in the majority of odontoblasts, which was blocked by TRPM7 blockers such as extracellular Mg and FTY720 in a dose-dependent manner. Mechanical stretch of the odontoblastic membrane with hypotonic solution also induced calcium transient, which was blocked by Gd, a nonselective mechanosensitive channel blocker. Calcium transient induced by hypotonic solution was also blocked by high extracellular Mg or FTY720. When TRPM7-mediated calcium transients in odontoblasts were analyzed on the subcellular level, remarkably larger transients were detected in the distal odontoblastic process compared with the soma, which was further verified with comparable immunocytochemical analysis. Our results demonstrate that TRPM7 in odontoblasts can serve as a mechanical sensor, with its distribution to facilitate intracellular Ca signaling in the odontoblastic process. These findings suggest TRPM7 as a mechanical transducer in odontoblasts to mediate intracellular calcium dynamics under diverse pathophysiological conditions of the dentin.
Hyperosmolar sweet foods onto exposed tooth dentin evoke sudden and intense dental pain, called dentin hypersensitivity. However, it remains unclear how hyperosmolar stimuli excite dental primary afferent (DPA) neurons and thereby lead to dentin hypersensitivity. This study elucidated whether TRPM8, which is well known as a cold temperature– or menthol-activated receptor, additionally mediates nociception in response to hyperosmolar stimuli in adult mouse DPA neurons, which are identified by a fluorescent retrograde tracer: DiI. Single-cell reverse transcription polymerase chain reaction revealed that TRPM8 was expressed in subsets of DPA neurons and that TRPM8 was highly colocalized with TRPV1 and Piezo2. Immunohistochemical analysis also confirmed TRPM8 expression in DPA neurons. By using Fura-2-based calcium imaging, application of hyperosmolar sucrose solutions elicited calcium transients in subsets of the trigeminal ganglion neurons, which was significantly abolished by a selective TRPM8 antagonist: N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide (AMTB) hydrochloride. When we further examined changes of c-fos expression (a neuronal activation marker) in the spinal trigeminal nucleus after hyperosmolar stimulation onto exposed tooth dentin, c-fos mRNA and protein expression were increased and were also significantly reduced by AMTB, especially in the spinal trigeminal interpolaris-caudalis transition zone (Vi/Vc). Taken together, our results provide strong evidence that TRPM8 expressed in DPA neurons might mediate dental pain as a hyperosmosensor in adult mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.