Human action recognition based on silhouette images has wide applications in computer vision, human computer interaction and intelligent surveillance. It is a challenging task due to the complex actions in nature. In this paper, a human action recognition method is proposed which is based on the distance transform and entropy features of human silhouettes. In the first stage, background subtraction is performed by applying correlation coefficient based frame difference technique to extract silhouette images. In the second stage, distance transform based features and entropy features are extracted from the silhouette images. The distance transform based features and entropy features provide the shape and local variation information. These features are given as input to neural networks to recognize various human actions. The proposed method is tested on three different datasets viz., Weizmann, KTH and UCF50. The proposed method obtains an accuracy of 92.5%, 91.4% and 80% for Weizmann, KTH and UCF50 datasets respectively. The experimental results show that the proposed method for human action recognition is comparable to other state-of-the-art human action recognition methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.