Cyanobacteria are the main component of microbial populations fixing atmospheric nitrogen in aquatic as well as terrestrial ecosystems, especially in wetland rice-fields, where they significantly contribute to fertility as natural biofertilizers. Cyanobacteria require solar radiation as their primary source of energy to carry out both photosynthesis and nitrogen fixation. The stratospheric ozone depletion which has resulted in an increase in ultraviolet-B (UV-B; 280 -315 nm) radiation on earth's surface has been reported to inhibit a number of photochemical and photobiological processes in cyanobacteria. However, certain cyanobacteria have evolved mechanisms such as synthesis of photoprotective compound scytonemin and their derivatives to counteract the damaging effects of UV-B. In addition this compound has anti-inflammatory and anti-proliferative potentials. This review deals with the role of scytonemin as photoprotective compound and its pharmacological as well as biotechnological potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.