Metal aerosol jet printing is a new non-contact direct-write technique for the front side metallization of highly efficient industrial silicon solar cells. With this technique the first layer of a two-layer contact structure is created. It features a low contact resistance and good mechanical adhesion to the silicon surface. The second layer is formed by light-induced silver plating (LIP) to increase the line conductivity. To form the first layer a metal-containing aerosol is created in the printer and focused via a second surrounding gas stream through a nozzle and deposited onto the substrate. The focussing gas avoids the contact between the aerosol and the nozzle tip. In addition, line widths significantly smaller than the outlet diameter of the nozzle tip can be reached. Fine and continuous lines with a width of 14 mm were printed using a metal organic ink. As the adhesion of these layers was not sufficient, a commercially available screen-printing paste for solar cell metallization was modified and tested. Monocrystalline silicon solar cells of 12Á5 cm T 12Á5 cm with an aluminum back surface field were processed, achieving energy conversion efficiencies up to 17Á8%.
High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 µm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have been found to not interfere with the presented nanopatterning. Micro-Ellipsometry was carried out to determine the complex dielectric function and to compare it to previous measurements of bulk single crystalline gold. Finally, we used focused ion beam milling to prepare smooth crystalline layers and high-quality nanostructures with desired thickness down to 10 nm to demonstrate the outstanding properties of the flakes. Our findings support the plasmonics and nano optics community with a better understanding of this material which is ideally suited for superior plasmonic nanostructures.
Fraunhofer ISE's concept for an advanced metallization of silicon solar cells is based on a two-step process: the deposition of a seed layer to form a mechanical and electrical contact and the subsequent thickening of this seed layer by a plating step, preferably by light-induced plating (LIP). The concept of a multi-layer metallization is used for most of the relevant high-efficiency cell types in industry. The main advantage of this concept is that each layer can be optimized individually, i.e. the seed layer to achieve an optimal electrical and mechanical contact and the plated layer in terms of high lateral conductivity and good solderability. Solar cells results with seed layers fabricated by aerosol printing, chemical Ni plating on cells with a laser-structured dielectric layer and laser-enhanced Ni plating are presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.