The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ( ΔT T ∼ 2 × 10 −6 ) and angular resolution (∼5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30−350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.
The two science missions Herschel, an observatory-type mission, and Planck, a survey mission, are combined in one program within ESA's long-term science program. This paper deals with Planck. The objective for Planck is to image systematically the whole sky simultaneously with two scientific instruments in nine frequency channels between 30 and 900 GHz to unravel the temperature fluctuations, i.e. the anisotropy, of the cosmic background radiation. Both satellites, have been launched together from the European Space Port in Kourou, French Guiana, on a single Ariane 5 launcher, the orbits will be Lissajous orbits around the 2nd Lagrange Point, "so called" L2 of the Earth-Sun system.This paper gives an overview of the Planck spacecraft including the scientific instruments and the on ground testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.